scholarly journals The frontal aslant tract and its role in executive functions: a quantitative tractography study in glioma patients

Author(s):  
Maud J. F. Landers ◽  
Stephan P. L. Meesters ◽  
Martine van Zandvoort ◽  
Wouter de Baene ◽  
Geert-Jan M. Rutten

AbstractFocal white matter lesions can cause cognitive impairments due to disconnections within or between networks. There is some preliminary evidence that there are specific hubs and fiber pathways that should be spared during surgery to retain cognitive performance. A tract potentially involved in important higher-level cognitive processes is the frontal aslant tract. It roughly connects the posterior parts of the inferior frontal gyrus and the superior frontal gyrus. Functionally, the left frontal aslant tract has been associated with speech and the right tract with executive functions. However, there currently is insufficient knowledge about the right frontal aslant tract’s exact functional importance. The aim of this study was to investigate the role of the right frontal aslant tract in executive functions via a lesion-symptom approach. We retrospectively examined 72 patients with frontal glial tumors and correlated measures from tractography (distance between tract and tumor, and structural integrity of the tract) with cognitive test performances. The results indicated involvement of the right frontal aslant tract in shifting attention and letter fluency. This involvement was not found for the left tract. Although this study was exploratory, these converging findings contribute to a better understanding of the functional frontal subcortical anatomy. Shifting attention and letter fluency are important for healthy cognitive functioning, and when impaired they may greatly influence a patient’s wellbeing. Further research is needed to assess whether or not damage to the right frontal aslant tract causes permanent cognitive impairments, and consequently identifies this tract as a critical pathway that should be taken into account during neurosurgical procedures.

2010 ◽  
Vol 22 (6) ◽  
pp. 269-279 ◽  
Author(s):  
Alexander Heinzel ◽  
Georg Northoff ◽  
Heinz Boeker ◽  
Peter Boesiger ◽  
Simone Grimm

Heinzel A, Northoff G, Boeker H, Boesiger P, Grimm S. Emotional processing and executive functions in major depressive disorder: dorsal prefrontal activity correlates with performance in the intra–extra dimensional set shift.Objective:Major depressive disorder (MDD) is characterised by predominately negatively valenced emotional symptoms that are often accompanied by cognitive impairments. We posited that cognitive impairments in MDD are related to altered emotional processing in prefrontal cortex.Methods:We compared 20 medication-free patients with MDD and 29 matched healthy controls. Both groups performed an emotional task during functional magnetic resonance imaging (fMRI). Furthermore, they completed the intra–extra dimensional set shift (IED) test probing for cognitive impairments. Then we correlated the results of the IED with the changes in fMRI BOLD signal in MDD patients and healthy subjects.Results:The subcategory of the IED applying extradimensional shift (EDS) showed a divergent performance of the MDD group committing significantly more errors than the control group. Correlating the EDS errors with fMRI signal changes, the healthy subjects showed a positive correlation with the right ventrolateral prefrontal cortex and the right orbitofrontal cortex. MDD subjects, in contrast, showed a positive correlation in right dorsolateral prefrontal cortex (DLPFC) and a negative correlation in the left dorsomedial prefrontal cortex (DMPFC).Conclusion:We hypothesise that the differential correlation in healthy controls and MDD patients may reflect the use of different strategies in their performance. The impaired executive functions, as reflected by altered processing in right DLPFC and left DMPFC, may implicitly influence emotional processing in patients suffering from MDD.


2018 ◽  
Author(s):  
Anthony Steven Dick ◽  
Dea Garic ◽  
Paulo Graziano ◽  
Pascale Tremblay

AbstractIn this review, we examine the structural connectivity of a recently-identified fiber pathway, the frontal aslant tract (FAT), and explore its function. We first review structural connectivity studies using tract-tracing methods in non-human primates, and diffusion-weighted imaging and electrostimulation in humans. These studies suggest a monosynaptic connection exists between the lateral inferior frontal gyrus and the pre-supplementary and supplementary motor areas of the medial superior frontal gyrus. This connection is termed the FAT. We then review research on the left FAT’s putative role in supporting speech and language function, with particular focus on speech initiation, stuttering and verbal fluency. Next, we review research on the right FAT’s putative role supporting executive function, namely inhibitory control and conflict monitoring for action. We summarize the extant body of empirical work by suggesting that the FAT plays a domain general role in the planning, timing, and coordination of sequential motor movements through the resolution of competition among potential motor plans. However, we also propose some domain specialization across the hemispheres. On the left hemisphere, the circuit is proposed to be specialized for speech actions. On the right hemisphere, the circuit is proposed to be specialized for general action control of the organism, especially in the visuo-spatial domain. We close the review with a discussion of the clinical significance of the FAT, and suggestions for further research on the pathway.HighlightsThe frontal aslant tract (FAT) is a recently identified fiber pathwayIt connects inferior frontal gyrus with medial frontal motor areasThe left FAT has been associated with speech and language functionThe right FAT has been associated with inhibitory controlBoth FAT pathways may function in sequential motor planning


Author(s):  
Geert-Jan M. Rutten ◽  
Maud J. F. Landers ◽  
Wouter De Baene ◽  
Tessa Meijerink ◽  
Stephanie van der Hek ◽  
...  

AbstractDirect electrical stimulation mapping was used to map executive functions during awake surgery of a patient with a right frontal low-grade glioma. We specifically targeted the frontal aslant tract, as this pathway had been infiltrated by the tumor. The right frontal aslant tract has been implicated in executive functions in the neuroscientific literature, but is yet of unknown relevance for clinical practice. Guided by tractography, electrical stimulation of the frontal aslant tract disrupted working memory and inhibitory functions. In this report we illustrate the dilemmas that neurosurgeons face when balancing maximal tumor resection against optimal cognitive performance. In particular, we emphasize that intraoperative tasks that target cognitive functions should be carefully introduced in clinical practice to prevent clinically irrelevant responses and too early termination of the resection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danian Li ◽  
Hanyue Zhang ◽  
Yujie Liu ◽  
Xinyu Liang ◽  
Yaoping Chen ◽  
...  

Background: Major depressive disorder (MDD) patients face an increased risk of developing cognitive impairments. One of the prominent cognitive impairments in MDD patients is verbal fluency deficit. Nonetheless, it is not clear which vulnerable brain region in MDD is interactively linked to verbal fluency deficit. It is important to gain an improved understanding for verbal fluency deficit in MDD.Methods: Thirty-four MDD patients and 34 normal controls (NCs) completed resting-state fMRI (rs-fMRI) scan and a set of verbal fluency tests (semantic VFT and phonemic VFT). Fourteen brain regions from five brain networks/systems (central executive network, default mode network, salience network, limbic system, cerebellum) based on their vital role in MDD neuropathology were selected as seeds for functional connectivity (FC) analyses with the voxels in the whole brain. Finally, correlations between the z-score of the FCs from clusters showing significant between-group difference and z-score of the VFTs were calculated using Pearson correlation analyses.Results: Increased FCs in MDD patients vs. NCs were identified between the bilateral posterior cingulate cortex (PCC) and the right inferior frontal gyrus (triangular part), in which the increased FC between the right PCC and the right inferior frontal gyrus (triangular part) was positively correlated with the z score of phonemic VFT in the MDD patients. Moreover, decreased FCs were identified between the right hippocampal gyrus and PCC, as well as left cerebellum Crus II and right parahippocampal gyrus in MDD patients vs. NCs.Conclusions: The MDD patients have altered FCs among key brain regions in the default mode network, the central executive network, the limbic system, and the cerebellum. The increased FC between the right PCC and the right inferior frontal gyrus (triangular part) may be useful to better characterize pathophysiology of MDD and functional correlates of the phonemic verbal fluency deficit in MDD.


2013 ◽  
Author(s):  
Maisy Best ◽  
Tobias Stevens ◽  
Fraser Milton ◽  
Christopher D. Chambers ◽  
Ian P. McLaren ◽  
...  

2010 ◽  
Vol 41 (01) ◽  
Author(s):  
K Menzler ◽  
A Welk ◽  
S Knake ◽  
WH Oertel ◽  
K Schepelmann ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Haeme R.P. Park ◽  
Miranda R. Chilver ◽  
Arthur Montalto ◽  
Javad Jamshidi ◽  
Peter R. Schofield ◽  
...  

Abstract Background Although mental wellbeing has been linked with positive health outcomes, including longevity and improved emotional and cognitive functioning, studies examining the underlying neural mechanisms of both subjective and psychological wellbeing have been sparse. We assessed whether both forms of wellbeing are associated with neural activity engaged during positive and negative emotion processing and the extent to which this association is driven by genetics or environment. Methods We assessed mental wellbeing in 230 healthy adult monozygotic and dizygotic twins using a previously validated questionnaire (COMPAS-W) and undertook functional magnetic resonance imaging during a facial emotion viewing task. We used linear mixed models to analyse the association between COMPAS-W scores and emotion-elicited neural activation. Univariate twin modelling was used to evaluate heritability of each brain region. Multivariate twin modelling was used to compare twin pairs to assess the contributions of genetic and environmental factors to this association. Results Higher levels of wellbeing were associated with greater neural activity in the dorsolateral prefrontal cortex, localised in the right inferior frontal gyrus (IFG), in response to positive emotional expressions of happiness. Univariate twin modelling showed activity in the IFG to have 20% heritability. Multivariate twin modelling suggested that the association between wellbeing and positive emotion-elicited neural activity was driven by common variance from unique environment (r = 0.208) rather than shared genetics. Conclusions Higher mental wellbeing may have a basis in greater engagement of prefrontal neural regions in response to positive emotion, and this association may be modifiable by unique life experiences.


2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Kyoung Lee ◽  
Sang Yoo ◽  
Eun Ji ◽  
Woo Hwang ◽  
Yeun Yoo ◽  
...  

Lateropulsion (pusher syndrome) is an important barrier to standing and gait after stroke. Although several studies have attempted to elucidate the relationship between brain lesions and lateropulsion, the effects of specific brain lesions on the development of lateropulsion remain unclear. Thus, the present study investigated the effects of stroke lesion location and size on lateropulsion in right hemisphere stroke patients. The present retrospective cross-sectional observational study assessed 50 right hemisphere stroke patients. Lateropulsion was diagnosed and evaluated using the Scale for Contraversive Pushing (SCP). Voxel-based lesion symptom mapping (VLSM) analysis with 3T-MRI was used to identify the culprit lesion for SCP. We also performed VLSM controlling for lesion volume as a nuisance covariate, in a multivariate model that also controlled for other factors contributing to pusher behavior. VLSM, combined with statistical non-parametric mapping (SnPM), identified the specific region with SCP. Lesion size was associated with lateropulsion. The precentral gyrus, postcentral gyrus, inferior frontal gyrus, insula and subgyral parietal lobe of the right hemisphere seemed to be associated with the lateropulsion; however, after adjusting for lesion volume as a nuisance covariate, no lesion areas were associated with the SCP scores. The size of the right hemisphere lesion was the only factor most strongly associated with lateropulsion in patients with stroke. These results may be useful for planning rehabilitation strategies of restoring vertical posture and understanding the pathophysiology of lateropulsion in stroke patients.


2008 ◽  
Vol 20 (2) ◽  
pp. 342-355 ◽  
Author(s):  
Tomoyo Morita ◽  
Shoji Itakura ◽  
Daisuke N. Saito ◽  
Satoshi Nakashita ◽  
Tokiko Harada ◽  
...  

Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.


2006 ◽  
Vol 18 (11) ◽  
pp. 1789-1798 ◽  
Author(s):  
Angela Bartolo ◽  
Francesca Benuzzi ◽  
Luca Nocetti ◽  
Patrizia Baraldi ◽  
Paolo Nichelli

Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81–100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.


Sign in / Sign up

Export Citation Format

Share Document