No modulation of experimentally-induced pain by navigation-guided rTMS of the right inferior frontal gyrus

2010 ◽  
Vol 41 (01) ◽  
Author(s):  
K Menzler ◽  
A Welk ◽  
S Knake ◽  
WH Oertel ◽  
K Schepelmann ◽  
...  
2013 ◽  
Author(s):  
Maisy Best ◽  
Tobias Stevens ◽  
Fraser Milton ◽  
Christopher D. Chambers ◽  
Ian P. McLaren ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Haeme R.P. Park ◽  
Miranda R. Chilver ◽  
Arthur Montalto ◽  
Javad Jamshidi ◽  
Peter R. Schofield ◽  
...  

Abstract Background Although mental wellbeing has been linked with positive health outcomes, including longevity and improved emotional and cognitive functioning, studies examining the underlying neural mechanisms of both subjective and psychological wellbeing have been sparse. We assessed whether both forms of wellbeing are associated with neural activity engaged during positive and negative emotion processing and the extent to which this association is driven by genetics or environment. Methods We assessed mental wellbeing in 230 healthy adult monozygotic and dizygotic twins using a previously validated questionnaire (COMPAS-W) and undertook functional magnetic resonance imaging during a facial emotion viewing task. We used linear mixed models to analyse the association between COMPAS-W scores and emotion-elicited neural activation. Univariate twin modelling was used to evaluate heritability of each brain region. Multivariate twin modelling was used to compare twin pairs to assess the contributions of genetic and environmental factors to this association. Results Higher levels of wellbeing were associated with greater neural activity in the dorsolateral prefrontal cortex, localised in the right inferior frontal gyrus (IFG), in response to positive emotional expressions of happiness. Univariate twin modelling showed activity in the IFG to have 20% heritability. Multivariate twin modelling suggested that the association between wellbeing and positive emotion-elicited neural activity was driven by common variance from unique environment (r = 0.208) rather than shared genetics. Conclusions Higher mental wellbeing may have a basis in greater engagement of prefrontal neural regions in response to positive emotion, and this association may be modifiable by unique life experiences.


2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Kyoung Lee ◽  
Sang Yoo ◽  
Eun Ji ◽  
Woo Hwang ◽  
Yeun Yoo ◽  
...  

Lateropulsion (pusher syndrome) is an important barrier to standing and gait after stroke. Although several studies have attempted to elucidate the relationship between brain lesions and lateropulsion, the effects of specific brain lesions on the development of lateropulsion remain unclear. Thus, the present study investigated the effects of stroke lesion location and size on lateropulsion in right hemisphere stroke patients. The present retrospective cross-sectional observational study assessed 50 right hemisphere stroke patients. Lateropulsion was diagnosed and evaluated using the Scale for Contraversive Pushing (SCP). Voxel-based lesion symptom mapping (VLSM) analysis with 3T-MRI was used to identify the culprit lesion for SCP. We also performed VLSM controlling for lesion volume as a nuisance covariate, in a multivariate model that also controlled for other factors contributing to pusher behavior. VLSM, combined with statistical non-parametric mapping (SnPM), identified the specific region with SCP. Lesion size was associated with lateropulsion. The precentral gyrus, postcentral gyrus, inferior frontal gyrus, insula and subgyral parietal lobe of the right hemisphere seemed to be associated with the lateropulsion; however, after adjusting for lesion volume as a nuisance covariate, no lesion areas were associated with the SCP scores. The size of the right hemisphere lesion was the only factor most strongly associated with lateropulsion in patients with stroke. These results may be useful for planning rehabilitation strategies of restoring vertical posture and understanding the pathophysiology of lateropulsion in stroke patients.


2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Daniele Martinelli ◽  
Gloria Castellazzi ◽  
Roberto De Icco ◽  
Ana Bacila ◽  
Marta Allena ◽  
...  

In this study we used nitroglycerin (NTG)-induced migraine attacks as a translational human disease model. Static and dynamic functional connectivity (FC) analyses were applied to study the associated functional brain changes. A spontaneous migraine-like attack was induced in five episodic migraine (EM) patients using a NTG challenge. Four task-free functional magnetic resonance imaging (fMRI) scans were acquired over the study: baseline, prodromal, full-blown, and recovery. Seed-based correlation analysis (SCA) was applied to fMRI data to assess static FC changes between the thalamus and the rest of the brain. Wavelet coherence analysis (WCA) was applied to test time-varying phase-coherence changes between the thalamus and salience networks (SNs). SCA results showed significantly FC changes between the right thalamus and areas involved in the pain circuits (insula, pons, cerebellum) during the prodromal phase, reaching its maximal alteration during the full-blown phase. WCA showed instead a loss of synchronisation between thalami and SN, mainly occurring during the prodrome and full-blown phases. These findings further support the idea that a temporal change in thalamic function occurs over the experimentally induced phases of NTG-induced headache in migraine patients. Correlation of FC changes with true clinical phases in spontaneous migraine would validate the utility of this model.


2008 ◽  
Vol 20 (2) ◽  
pp. 342-355 ◽  
Author(s):  
Tomoyo Morita ◽  
Shoji Itakura ◽  
Daisuke N. Saito ◽  
Satoshi Nakashita ◽  
Tokiko Harada ◽  
...  

Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.


2006 ◽  
Vol 18 (11) ◽  
pp. 1789-1798 ◽  
Author(s):  
Angela Bartolo ◽  
Francesca Benuzzi ◽  
Luca Nocetti ◽  
Patrizia Baraldi ◽  
Paolo Nichelli

Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81–100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.


2021 ◽  
Author(s):  
Zhaoqi Zhang ◽  
Qiming Yuan ◽  
Zeping Liu ◽  
Man Zhang ◽  
Junjie Wu ◽  
...  

Abstract Writing sequences play an important role in handwriting of Chinese characters. However, little is known regarding the integral brain patterns and network mechanisms of processing Chinese character writing sequences. The present study decoded brain patterns during observing Chinese characters in motion by using multi-voxel pattern analysis (MVPA), meta-analytic decoding analysis, and extended unified structural equation model (euSEM). We found that perception of Chinese character writing sequence recruited brain regions not only for general motor schema processing, i.e., the right inferior frontal gyrus, shifting and inhibition functions, i.e., the right postcentral gyrus and bilateral pre-SMA/dACC, but also for sensorimotor functions specific for writing sequences. More importantly, these brain regions formed a cooperatively top-down brain network where information was transmitted from brain regions for general motor schema processing to those specific for writing sequences. These findings not only shed light on the neural mechanisms of Chinese character writing sequences, but also extend the hierarchical control model on motor schema processing.


2012 ◽  
Vol 117 (5) ◽  
pp. 844-850 ◽  
Author(s):  
Juan Martino ◽  
Enrique Marco de Lucas ◽  
Francisco Javier Ibáñez-Plágaro ◽  
José Manuel Valle-Folgueral ◽  
Alfonso Vázquez-Barquero

Foix-Chavany-Marie syndrome (FCMS) is a rare type of suprabulbar palsy characterized by an automaticvoluntary dissociation of the orofacial musculature. Here, the authors report an original case of FCMS that occurred intraoperatively while resecting the pars opercularis of the inferior frontal gyrus. This 25-year-old right-handed man with an incidentally diagnosed right frontotemporoinsular tumor underwent surgery using an asleep-awake-asleep technique with direct cortical and subcortical electrical stimulation and a transopercular approach to the insula. While resecting the anterior part of the pars opercularis the patient suffered sudden anarthria and bilateral facial weakness. He was unable to speak or show his teeth on command, but he was able to voluntarily move his upper and lower limbs. This syndrome lasted for 8 days. Postoperative diffusion tensor imaging tractography revealed that connections of the pars opercularis of the right inferior frontal gyrus with the frontal aslant tract (FAT) and arcuate fasciculus (AF) were damaged. This case supplies evidence for localizing the structural substrate of FCMS. It was possible, for the first time in the literature, to accurately correlate the occurrence of FCMS to the resection of connections between the FAT and AF, and the right pars opercularis of the inferior frontal gyrus. The FAT has been recently described, but it may be an important connection to mediate supplementary motor area control of orofacial movement. The present case also contributes to our knowledge of complication avoidance in operculoinsular surgery. A transopercular approach to insuloopercular gliomas can generate FCMS, especially in cases of previous contralateral lesions. The prognosis is favorable, but the patient should be informed of this particular hazard, and the surgeon should anticipate the surgical strategy in case the syndrome occurs intraoperatively in an awake patient.


2019 ◽  
Vol 31 (4) ◽  
pp. 560-573 ◽  
Author(s):  
Kenny Skagerlund ◽  
Taylor Bolt ◽  
Jason S. Nomi ◽  
Mikael Skagenholt ◽  
Daniel Västfjäll ◽  
...  

What are the underlying neurocognitive mechanisms that give rise to mathematical competence? This study investigated the relationship between tests of mathematical ability completed outside the scanner and resting-state functional connectivity (FC) of cytoarchitectonically defined subdivisions of the parietal cortex in adults. These parietal areas are also involved in executive functions (EFs). Therefore, it remains unclear whether there are unique networks for mathematical processing. We investigate the neural networks for mathematical cognition and three measures of EF using resting-state fMRI data collected from 51 healthy adults. Using 10 ROIs in seed to whole-brain voxel-wise analyses, the results showed that arithmetical ability was correlated with FC between the right anterior intraparietal sulcus (hIP1) and the left supramarginal gyrus and between the right posterior intraparietal sulcus (hIP3) and the left middle frontal gyrus and the right premotor cortex. The connection between the posterior portion of the left angular gyrus and the left inferior frontal gyrus was also correlated with mathematical ability. Covariates of EF eliminated connectivity patterns with nodes in inferior frontal gyrus, angular gyrus, and middle frontal gyrus, suggesting neural overlap. Controlling for EF, we found unique connections correlated with mathematical ability between the right hIP1 and the left supramarginal gyrus and between hIP3 bilaterally to premotor cortex bilaterally. This is partly in line with the “mapping hypothesis” of numerical cognition in which the right intraparietal sulcus subserves nonsymbolic number processing and connects to the left parietal cortex, responsible for calculation procedures. We show that FC within this circuitry is a significant predictor of math ability in adulthood.


2021 ◽  
Vol 12 ◽  
Author(s):  
Spencer Bell ◽  
Brett Froeliger

Nicotine addiction is associated with dysregulated inhibitory control (IC), mediated by corticothalamic circuitry including the right inferior frontal gyrus (rIFG). Among sated smokers, worse IC task performance and greater IC-related rIFG activity have been shown to be associated with greater relapse vulnerability. The present study investigated the effects of smoking abstinence on associations between IC task performance, rIFG activation, and smoking behavior. Smokers (N = 26, 15 female) completed an IC task (Go/Go/No-go) during fMRI scanning followed by a laboratory-based smoking relapse analog task (SRT) on two visits: once when sated and once following 24 h of smoking abstinence. During the SRT, smokers were provided with monetary rewards for incrementally delaying smoking. A significant main effect of No-go accuracy on latency to smoke during the SRT was observed when collapsing across smoking states (abstinent vs. sated). Similarly, a significant main effect of IC-related activation in rIFG on SRT performance was observed across states. The main effect of state, however, was non-significant in both of these models. Furthermore, the interaction between smoking state and No-go accuracy on SRT performance was non-significant, indicating a similar relationship between IC and lapse vulnerability under both sated and abstinent conditions. The state X rIFG activation interaction on SRT performance was likewise non-significant. Post-hoc whole brain analyses indicated that abstinence resulted in greater IC-related activity in the right middle frontal gyrus (MFG) and insula. Activation during IC in these regions was significantly associated with decreased No-go accuracy. Moreover, greater abstinence induced activity in right MFG during IC was associated with smoking sooner on the SRT. These findings are bolstered by the extant literature on the effects of nicotine on executive function and also contribute novel insights on how individual differences in behavioral and neuroimaging measures of IC may influence relapse propensity independent of smoking state.


Sign in / Sign up

Export Citation Format

Share Document