Association of Serum Magnesium with Oxidative Stress in the Pathogenesis of Diabetic Cataract

Author(s):  
Ramachandran Kaliaperumal ◽  
Ramesh Venkatachalam ◽  
Prithiviraj Nagarajan ◽  
Satheesh Kumar Sabapathy
Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 907 ◽  
Author(s):  
Man Liu ◽  
Samuel C. Dudley

Hypomagnesemia is commonly observed in heart failure, diabetes mellitus, hypertension, and cardiovascular diseases. Low serum magnesium (Mg) is a predictor for cardiovascular and all-cause mortality and treating Mg deficiency may help prevent cardiovascular disease. In this review, we discuss the possible mechanisms by which Mg deficiency plays detrimental roles in cardiovascular diseases and review the results of clinical trials of Mg supplementation for heart failure, arrhythmias and other cardiovascular diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jintanaporn Wattanathorn ◽  
Paphaphat Thiraphatthanavong ◽  
Wipawee Thukham-mee ◽  
Supaporn Muchimapura ◽  
Panakaporn Wannanond ◽  
...  

The novel protectant against diabetic cataract and diabetic retinopathy is currently required due to the increased prevalence and therapeutic limitation. Based on the advantage of polyphenol on diabetic eye complications, we hypothesized that the combined extract of mango seed Vietnamese coriander (MPO), a polyphenol-rich substance, should possess anticataractogenesis and antiretinopathy in streptozotocin- (STZ-) diabetic rats. MPO at doses of 2, 10, and 50 mg/kg·BW were orally given to STZ-diabetic rats for 10 weeks. Lens opacity was evaluated every week throughout a study period whereas the evaluation of cataract severity and histological changes of both rat lens epithelium and retina together with the biochemical assays of oxidative stress status, aldose reductase, p38MAPK, ERK1/2, and VEGF were performed at the end of experiment. Our data showed that MPO improved cataract and retinopathy in STZ-diabetic rats. The improved oxidative stress status and the decreased p38MAPK, ERK1/2, and VEGF were also observed. Therefore, anticataractogenesis and antiretinopathy of MPO might occur partly via the decreased oxidative stress status and the suppression of aldose reductase, p38MAPK, ERK1/2, and VEGF. This study points out that MPO is the potential candidate protectant against diabetic cataract and diabetic retinopathy. However, the exploration for possible active ingredient (S) still requires further researches.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Feriyani Feriyani ◽  
Hady Maulanza ◽  
Rodiah Rahmawaty Lubis ◽  
Ummu Balqis ◽  
Darmawi Darmawi

Cataracts are one of the most causes of blindness in the world. Oxidative stress can form pathological conditions such as cataracts. This oxidative stress ability can be measured by the malondialdehyde (MDA) biomarker. Binahong leaves (Anredera cordifolia (Tenore) Steenis) are native plants from Indonesia that are used to treat various diseases including cataract treatment. Binahong leaf (Anredera cordifolia (Tenore) Steenis) has a high amount of flavonoids and is rich in antioxidants that can be used to treat cataracts. Objective. The purpose of this study was to assess the effect of binahong leaf extract on the levels of MDA in a goat lens with cataract-induced material. Method. As many as possible, 40 goat eye lenses were divided into several groups, namely, group I normal lenses as controls (glucose 5.5 mM), group II lenses were cataract induced with glucose concentration of 55 mM, group III lenses with glucose 55 mM + binahong leaf extract (100 μg/ml), group IV lens with glucose 55 mM + binahong leaf extract (200 μg/ml), and group V lens with glucose 55 mM + quercetin (positive control). Biochemical parameters measured in the lens homogenate are malondialdehyde lens morphology in all groups’ observations and comparisons made. Results. The results of the study found that the lens group with the addition of binahong extract showed more results transparency compared to lens groups induced by glucose concentrations of 55 mM). This shows that the diabetic cataract group experienced high oxidative stress due to the accumulation of sorbitol compounds derived from glucose which caused turbidity in the goat eye lens and increased levels of lens MDA. Binahong levels at concentrations of 100 or 200 can inhibit MDA production. Conclusion. Binahong (Anredera cordifolia (Tenore) Steenis) extract has the ability to inhibit the production of MDA levels. In glucose-induced goat lenses, binahong extract and quercetin show antioxidant and anticataract properties.


2020 ◽  
Author(s):  
Carmen Vida ◽  
Julia Carracedo ◽  
Patricia de Sequera ◽  
Guillermo Bodega ◽  
Rafael Pérez ◽  
...  

Abstract Background The use of dialysis fluids (DFs) during haemodialysis has been associated with increased oxidative stress and reduced serum magnesium (Mg) levels, contributing to chronic inflammation. Since the role of Mg in modulating immune function and reducing oxidative stress has been demonstrated, the aim of this study was to characterize in vitro whether increasing the Mg concentration in DFs could protect immune cells from oxidative stress and damage. Methods The effect of citrate [citrate dialysis fluid (CDF), 1 mM] or acetate [acetate dialysis fluid (ADF), 3 mM] dialysates with low (0.5 mM; routinely used) or high (1 mM, 1.25 mM and 2 mM) Mg concentrations was assessed in THP-1 human monocytes. The levels of reactive oxygen species (ROS), malondialdehyde (MDA) and oxidized/reduced (GSSG/GSH) glutathione were quantified under basal and inflammatory conditions (stimulation with lipopolysaccharide, LPS). Results The increase of Mg in CDF resulted in a significant reduction of ROS production under basal and inflammatory conditions (extremely marked in 2 mM Mg; P < 0.001). These effects were not observed in ADF. Interestingly, in a dose-dependent manner, high Mg doses in CDF reduced oxidative stress in monocytes under both basal and inflammatory conditions. In fact, 2 mM Mg significantly decreased the levels of GSH, GSSG and MDA and the GSSG/GSH ratio in relation to 0.5 mM Mg. Conclusions CDF produces lower oxidative stress than ADF. The increase of Mg content in DFs, especially in CDF, could have a positive and protective effect in reducing oxidative stress and damage in immune cells, especially under inflammatory conditions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Fuxu Wang ◽  
Jia Ma ◽  
Fei Han ◽  
Xiujin Guo ◽  
Li Meng ◽  
...  

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Sergey Lupachyk ◽  
Viktor R Drel ◽  
Roman Stavniichuk ◽  
Azza B El-Remessy ◽  
Irina G Obrosova

2012 ◽  
Vol 1 (1) ◽  
pp. 23 ◽  
Author(s):  
AnharM Gomaa ◽  
AmalA Hassan ◽  
GaberM.G. Shehab ◽  
FatmaH Abd El-Razek ◽  
EmanM El-Metwally

Sign in / Sign up

Export Citation Format

Share Document