scholarly journals Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps

Author(s):  
Ahmad Alali ◽  
Lin Zhang ◽  
Jianyu Li ◽  
Chijian Zuo ◽  
Dimah Wassouf ◽  
...  

AbstractRishirilides are a group of PKS II secondary metabolites produced by Streptomyces bottropensis Gö C4/4. Biosynthetic studies in the past have elucidated early and late steps of rishirilide biosynthesis. This work is aiming to solve the remaining steps in the rishirilide biosynthesis. Inactivation of the cyclase gene rslC3 in Streptomyces bottropensis resulted in an interruption of rishirilide production. Instead, accumulation of the tricyclic aromatic galvaquinones was observed. Similar results were observed after deletion of rslO4. Closer inspection into RslO4 crystal structure in addition to site-directed mutagenesis and molecular dynamic simulations revealed that RslO4 might be responsible for quinone formation on the third ring. The RslO1 three-dimensional structure shows a high similarity to FMN-dependent luciferase-like monooxygenases such as the epoxy-forming MsnO8 which acts with the flavin reductase MsnO3 in mensacarcin biosynthesis in the same strain. The high sequence similarity between RslO2 and MsnO3 suggests that RslO2 provides RslO1 with reduced FMN to form an epoxide that serves as substrate for RslO5.

Reproduction ◽  
2002 ◽  
pp. 13-21 ◽  
Author(s):  
WG Breed ◽  
RM Hope ◽  
OW Wiebkin ◽  
SC Spargo ◽  
JA Chapman

In this review, the biochemical composition and structural organization of the marsupial and eutherian zonae pellucidae are compared. Differences between the zonae from these two groups of mammals are observed in their response to dilute proteases and reducing agents, in their potential glycosylation patterns, and in some of their functions. However, studies on the glycoconjugates and polypeptides of the three zona pellucida genes have not explained these different responses to the proteases and reducing agents. There is high sequence similarity between the zona polypeptides of marsupials and eutherians, as well as a similarity in the oligosaccharides present, as demonstrated by lectin staining. As the marsupial and eutherian lineages diverged from a common ancestor over 100 million years ago, these observations indicate that the three-dimensional structure of these glycoproteins is highly conserved throughout all mammals, although the complexity of its molecular organization has yet to be resolved. Phylogenetic analyses indicate that there are at least four groups of paralogous zona pellucida genes in vertebrates. The marsupial ZPA and ZPB genes have been named in accordance with their orthologues but the phylogenetic relationships of the marsupial ZPC gene require further investigation.


2000 ◽  
Vol 348 (3) ◽  
pp. 649-656 ◽  
Author(s):  
Allan M. TORRES ◽  
Greg M. DE PLATER ◽  
Magnus DOVERSKOG ◽  
Liesl C. BIRINYI-STRACHAN ◽  
Graham M. NICHOLSON ◽  
...  

The venom of the male Australian duck-billed platypus contains a family of four polypeptides of appox. 5 kDa, which are referred to as defensin-like peptides (DLPs). They are unique in that their amino acid sequences have no significant similarities to those of any known peptides; however, the tertiary structure of one of them, DLP-1, has recently been shown to be similar to β-defensin-12 and to the sodium neurotoxin peptide ShI (Stichodactyla helianthus neurotoxin I). Although DLPs are the major peptides in the platypus venom, little is known about their biological roles. In this study, we determined the three-dimensional structure of DLP-2 by NMR spectroscopy, with the aim of gaining insights into the natural function of the DLPs in platypus venom. The DLP-2 structure was found to incorporate a short helix that spans residues 9-12, and an antiparallel β-sheet defined by residues 15-18 and 37-40. The overall fold and cysteine-pairing pattern of DLP-2 were found to be similar to those of DLP-1, and hence β-defensin-12; however, the sequence similarities between the three molecules are relatively small. The distinct structural fold of the DLP-1, DLP-2, and β-defensin-12 is based upon several key residues that include six cysteines. DLP-3 and DLP-4 are also likely to be folded similarly since they have high sequence similarity with DLP-2. The DLPs, and β-defensin-12 may thus be grouped together into a class of polypeptide molecules which have a common or very similar global fold. The fact that the DLPs did not display antimicrobial, myotoxic, or cell-growth-promoting activities implies that the nature of the side chains in this group of peptides is likely to play an important role in defining the biological function(s).


Author(s):  
Jerome J. Paulin

Within the past decade it has become apparent that HVEM offers the biologist a means to explore the three-dimensional structure of cells and/or organelles. Stereo-imaging of thick sections (e.g. 0.25-10 μm) not only reveals anatomical features of cellular components, but also reduces errors of interpretation associated with overlap of structures seen in thick sections. Concomitant with stereo-imaging techniques conventional serial Sectioning methods developed with thin sections have been adopted to serial thick sections (≥ 0.25 μm). Three-dimensional reconstructions of the chondriome of several species of trypanosomatid flagellates have been made from tracings of mitochondrial profiles on cellulose acetate sheets. The sheets are flooded with acetone, gluing them together, and the model sawed from the composite and redrawn.The extensive mitochondrial reticulum can be seen in consecutive thick sections of (0.25 μm thick) Crithidia fasciculata (Figs. 1-2). Profiles of the mitochondrion are distinguishable from the anterior apex of the cell (small arrow, Fig. 1) to the posterior pole (small arrow, Fig. 2).


1992 ◽  
Vol 288 (1) ◽  
pp. 117-121 ◽  
Author(s):  
E P Ko ◽  
H Akatsuka ◽  
H Moriyama ◽  
A Shinmyo ◽  
Y Hata ◽  
...  

To elucidate the reaction mechanism of xylanase, the identification of amino acids essential for its catalysis is of importance. Studies have indicated the possibility that the reaction mechanism of xylanase is similar to that of hen's egg lysozyme, which involves acidic amino acid residues. On the basis of this assumption, together with the three-dimensional structure of Bacillus pumilus xylanase and its amino acid sequence similarity to other xylanases of different origins, three acidic amino acids, namely Asp-21, Glu-93 and Glu-182, were selected for site-directed mutagenesis. The Asp residue was altered to either Ser or Glu, and the Glu residues to Ser or Asp. The purified mutant xylanases D21E, D21S, E93D, E93S, E182D and E182S showed single protein bands of about 26 kDa on SDS/PAGE. C.d. spectra of these mutant enzymes show no effect on the secondary structure of xylanase, except that of D21E, which shows a little variation. Furthermore, mutations of Glu-93 and Glu-182 resulted in a drastic decrease in the specific activity of xylanase as compared with mutation of Asp-21. On the basis of these results we propose that Glu-93 and Glu-182 are the best candidates for the essential catalytic residues of xylanase.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 556 ◽  
Author(s):  
Veeramachaneni ◽  
Thunuguntla ◽  
Bhaswant ◽  
Mathai ◽  
Bondili

Obesity prevalence continues to be a foremost health concern across the globe leading to the development of major health risk conditions like type II diabetes, hyperlipidemia, hypertension and even cancers. Because of the deprived drug-based management system, there is an urgent need for the development of new drugs aiming at satiety and appetite control targets. Among the reported satiety signaling targets, 5HT2C receptor plays a crucial role in decreasing appetite and has become a promising target for the development of anti-obesity drugs. Lorcaserin, a 5HT2C receptor agonist and the only drug available in the market, was designed based on the receptor mechanism of action. Due to limited drug options available and considering the adverse drug effects of Lorcaserin, the development of new drugs which are highly specific toward the 5HT2C target and with lesser side effects is essential. The present study is majorly focused on developing new 5HT2C agonists through computational approaches like screening, docking, and simulation using Phase, QikProp, Glide and Desmond applications of the Schrodinger suite. Screening protocols resulted in eight best hit molecules with affinity for the receptor and among them, five hits displayed binding affinity toward the conserved residue Asp 134 of the receptor. The stability of the five molecules in complex with the 5HT2C receptor was studied through molecular dynamic simulations. Three molecules, ZINC32123870, ZINC40312983 and ZINC32124535, maintained stable interactions with the Asp 134 residue throughout the 50 ns simulation run time. Further, due to the high sequence similarity seen among the receptors of 5HT2 family, the three potential hits were cross validated against other subtypes 5HT2A and 5HT2B of the 5HT2 family to determine the specificity of the molecules against the target. Among the three hits, ZINC32124535 was identified as the best potential hit based on the hydrogen bond interaction percentage with Asp residue [5HT2A (Asp 155:60%); 5HT2B (Asp155: No interaction); 5HT2C (Asp 134:86%)]. The ZINC32124535 molecule produced one salt bridge and hydrogen bond interactions with Asp 134, alike the known drug Lorcaserin. Based on the results, ZINC32124535 was identified as the best potential hit against the 5HT2C receptor.


Author(s):  
Gabriel Jan Abrahams ◽  
Janet Newman

Crystallization is in many cases a critical step for solving the three-dimensional structure of a protein molecule. Determining which set of chemicals to use in the initial screen is typically agnostic of the protein under investigation; however, crystallization efficiency could potentially be improved if this were not the case. Previous work has assumed that sequence similarity may provide useful information about appropriate crystallization cocktails; however, the authors are not aware of any quantitative verification of this assumption. This research investigates whether, given current information, one can detect any correlation between sequence similarity and crystallization cocktails. BLAST was used to quantitate the similarity between protein sequences in the Protein Data Bank, and this was compared with three estimations of the chemical similarities of the respective crystallization cocktails. No correlation was detected between proteins of similar (but not identical) sequence and their crystallization cocktails, suggesting that methods of determining screens based on this assumption are unlikely to result in screens that are better than those currently in use.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 312 ◽  
Author(s):  
Vanessa Vieira ◽  
Bruno Peixoto ◽  
Mónica Costa ◽  
Susana Pereira ◽  
José Pissarra ◽  
...  

In plant cells, the conventional route to the vacuole involves the endoplasmic reticulum, the Golgi and the prevacuolar compartment. However, over the years, unconventional sorting to the vacuole, bypassing the Golgi, has been described, which is the case of the Plant-Specific Insert (PSI) of the aspartic proteinase cardosin A. Interestingly, this Golgi-bypass ability is not a characteristic shared by all PSIs, since two related PSIs showed to have different sensitivity to ER-to-Golgi blockage. Given the high sequence similarity between the PSI domains, we sought to depict the differences in terms of post-translational modifications. In fact, one feature that draws our attention is that one is N-glycosylated and the other one is not. Using site-directed mutagenesis to obtain mutated versions of the two PSIs, with and without the glycosylation motif, we observed that altering the glycosylation pattern interferes with the trafficking of the protein as the non-glycosylated PSI-B, unlike its native glycosylated form, is able to bypass ER-to-Golgi blockage and accumulate in the vacuole. This is also true when the PSI domain is analyzed in the context of the full-length cardosin. Regardless of opening exciting research gaps, the results obtained so far need a more comprehensive study of the mechanisms behind this unconventional direct sorting to the vacuole.


2003 ◽  
Vol 89 (01) ◽  
pp. 74-82 ◽  
Author(s):  
Koen Verbeke ◽  
Ann Gils ◽  
Jean-Marie Stassen ◽  
Paul Declerck

SummaryInterfering with increased levels of plasminogen activator inhibitor-1 (PAI-1) might offer new therapeutic strategies for a variety of cardiovascular diseases. Inactivation of PAI-1 can be accomplished by a number of monoclonal antibodies (MA), including MA-8H9D4. In a previous study, a single-chain variable fragment (scFv-8H9D4) was cloned and found to have the same properties as the parental MA-8H9D4. In the present study, we identified the residues of scFv-8H9D4 that contribute significantly to the paratope. The complementarity determining region 3 from the heavy (H3) and the light (L3) chain were analysed through site-directed mutagenesis. Out of twelve mutations, only four residues appeared to contribute to the paratope. The affinity of scFv-8H9D4-H3-L97D for PAI-1 was 38-fold decreased (KA = 4.8 ± 0.2 × 107 M–1 vs. 1.8 ± 0.7 × 109 M–1 for scFv-8H9D4) whereas scFv-8H9D4-H3-R98Y did not bind to PAI-1. The affinities of scFv-8H9D4-L3-Y91S and scFv-8H9D4-L3-F94D for PAI-1 were 9- and 5-fold reduced, respectively, whereas the combined mutation resulted in an 86-fold decreased affinity (KA = 2.1 ± 0.2 × 107 M–1).In accordance with the affinity data, these mutants had no, or a reduced, PAI-1 inhibitory capacity, confirming that these four particular residues form the major interaction site of scFv-8H9D4 with PAI-1. In combination with the three-dimensional structure, these data contribute to the rational design of PAI-1 neutralizing compounds.


1999 ◽  
Vol 181 (15) ◽  
pp. 4611-4616 ◽  
Author(s):  
Helen D. Simpson ◽  
Frederic Barras

ABSTRACT The Cel5 cellulase (formerly known as endoglucanase Z) fromErwinia chrysanthemi is a multidomain enzyme consisting of a catalytic domain, a linker region, and a cellulose binding domain (CBD). A three-dimensional structure of the CBDCel5 has previously been obtained by nuclear magnetic resonance. In order to define the role of individual residues in cellulose binding, site-directed mutagenesis was performed. The role of three aromatic residues (Trp18, Trp43, and Tyr44) in cellulose binding was demonstrated. The exposed potential hydrogen bond donors, residues Gln22 and Glu27, appeared not to play a role in cellulose binding, whereas residue Asp17 was found to be important for the stability of Cel5. A deletion mutant lacking the residues Asp17 to Pro23 bound only weakly to cellulose. The sequence of CBDCel5 exhibits homology to a series of five repeating domains of a putative large protein, referred to as Yheb, from Escherichia coli. One of the repeating domains (Yheb1), consisting of 67 amino acids, was cloned from the E. coli chromosome and purified by metal chelating chromatography. While CBDCel5 bound to both cellulose and chitin, Yheb1 bound well to chitin, but only very poorly to cellulose. The Yheb protein contains a region that exhibits sequence homology with the catalytic domain of a chitinase, which is consistent with the hypothesis that the Yheb protein is a chitinase.


Sign in / Sign up

Export Citation Format

Share Document