Dimensional synthesis of six-degrees-of-freedom high-speed parallel robot using comprehensive evaluation index

2020 ◽  
Vol 34 (3) ◽  
pp. 1325-1338
Author(s):  
Fan Zhang ◽  
Jiangping Mei ◽  
Yanqin Zhao
Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


Author(s):  
Ronen Ben-Horin ◽  
Moshe Shoham

Abstract The construction of a new type of a six-degrees-of-freedom parallel robot is presented in this paper. Coordinated motion of three planar motors, connected to three fixed-length links, produces a six-degrees-of-freedom motion of an output link. Its extremely simple design along with much larger work volume make this high performance-to-simplicity ratio robot very attractive.


Author(s):  
Xinguo Wang ◽  
Jack Bonoli ◽  
Madeline Cohen ◽  
Mirjam Fürth

Hydrodynamics of High Speed Craft is a topic of very high interest for recreational boaters and industry professionals alike. This project aims to be a first step toward conducting such experiments in exposed outdoor environments. This paper will outline a preliminary design and testing plan of a free running model of a high speed craft. The proposed free running model will be subjected to all six degrees of freedom, self propelled, autonomously controlled, and will be exposed to weather elements.


Author(s):  
Liao Dao-Xun ◽  
Lu Yong-Zhong ◽  
Huang Xiao-Cheng

Abstract The multilayer vibration isolation system has been widely applied to isolate vibration in dynamic devices of ships, high-speed vehicles forging hammer and precise instruments. The paper is based on the coordinate transformation of space general motion for mass blocks (rigid bodies) and Lagrangian equation of multilayer vibration isolation system. It gives a strict mathematical derivation on the differential equation of the motion for the system with six degrees of freedom of relative motion between mass blocks (including base). The equations are different from the same kind of equations in the reference literatures. It can be used in the floating raft of ships in order to isolates vibration and decrease noise, also used in design calculation of the multilayer vibration isolation for dynamic machines and precise instruments on the dry land.


Author(s):  
Patricia Ben-Horin (Dombiak) ◽  
Moshe Shoham ◽  
Gershon Grossman

Abstract A new structure of a six degrees-of-freedom robot is described in this paper. The robot presents two new features: three inflatable links that constitute the robot structure and parallel robot architecture with large workspace. These features result in a lightweight and easy to deploy robot. The structure, kinematics and path planning of the experimental robot are presented.


2020 ◽  
pp. 107754632094834
Author(s):  
Mojtaba Mirzaei ◽  
Hossein Taghvaei

High-speed supercavitating vehicles are surrounded by a huge cavity of gas and only a small portion of the nose and the tail of the vehicle are in contact with the water which leads to a considerable reduction in skin friction drag and reaching very high speeds. High-speed supercavitating vehicles are usually controlled by the cavitator at the nose which controls the pitch and depth of the vehicle and the control surfaces or fins which control the roll and heading angle of the vehicle using the bank-to-turn maneuvering method. However, control surfaces have disadvantages such as the high drag force and ineffectiveness due to the supercavity. Therefore, the purpose of the present study is to eliminate the fins from high-speed supercavitating vehicles and propose a new bank-to-turn heading control of this novel finless high-speed supercavitating vehicle which is composed of the cavitator at the nose and an oscillating pendulum as the internal actuator. Sliding mode control as a robust method is used for the six-degrees-of-freedom model of this finless high-speed vehicle against exposed disturbances. Some design criteria for the design of the internal pendulum in this finless supercavitating vehicle are presented for the damping coefficient, pendulum mass, and radius.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988011
Author(s):  
Jiangping Mei ◽  
Fan Zhang ◽  
Jiawei Zang ◽  
Yanqin Zhao ◽  
Han Yan

According to the problem that the existing high-speed parallel robot cannot satisfy the operation requirements of non-planar industrial production line, a 6-degrees-of-freedom high-speed parallel robot is proposed to carry out the kinematic and dynamic analyses. Combining with the door-type trajectory commonly used by the parallel robot, it adopts 3-, 5-, and 7-time B-spline curve motion law to conduct the trajectory planning in operation space. Taking the average cumulative effect of joint jerky as the optimization target, a trajectory optimization method is proposed to improve the smoothness of robot end-effector motion with the selected motion law. Furthermore, to solve the deformation problem of the horizontal motion stage of the trajectory, a mapping model between the control point subset of B-spline and the motion point subset of trajectory is established. Based on the main diagonally dominant characteristic of the coefficient matrix, the trajectory deformation evaluation index is constructed to optimize the smoothness and minimum deformation of the robot motion trajectory. Finally, compared to without the optimization, the maximum robot joint jerk decreases by 69.4% and 72.3%, respectively, and the maximum torque decreases by 51.4% and 38.9%, respectively, under a suitable trajectory deformation.


Author(s):  
Sandor Riebe ◽  
Heinz Ulbrich

Parallel kinematics with multi degrees-of-freedom (DOF), like hexapod-systems, are mostly used in applications where high demands on position accuracy are required and/or high accelerations are needed. Adequate control concepts are essential in order to achieve the desired dynamic response. This paper deals with a comparative study of two structural different control concepts applied on a parallel robot with six degrees-of-freedom. The first one is a decentral linear approach and the second one is a multivariable nonlinear approach. The two concepts are presented and implemented on an experimental hexapod-system. In order to verify the used dynamic model comparisons between simulation and measurement results are shown. Finally, experiments have been carried out to compare the control laws with respect to their motion tracking performance.


Sign in / Sign up

Export Citation Format

Share Document