scholarly journals Stress generation and non-intrusive measurement in virtual environments using eye tracking

2020 ◽  
Vol 11 (12) ◽  
pp. 5977-5989 ◽  
Author(s):  
Christian Hirt ◽  
Marcel Eckard ◽  
Andreas Kunz

AbstractIn real life, it is well understood how stress can be induced and how it is measured. While virtual reality (VR) applications can resemble such stress inducers, it is still an open question if and how stress can be measured in a non-intrusive way during VR exposure. Usually, the quality of VR applications is estimated by user acceptance in the form of presence. Presence itself describes the individual’s acceptance of a virtual environment as real and is measured by specific questionnaires. Accordingly, it is expected that stress strongly affects this presence and thus also the quality assessment. Consequently, identifying the stress level of a VR user may enable content creators to engage users more immersively by adjusting the virtual environment to the measured stress. In this paper, we thus propose to use a commercially available eye tracking device to detect stress while users are exploring a virtual environment. We describe a user study in which a VR task was implemented to induce stress, while users’ pupil diameter and pulse were measured and evaluated against a self-reported stress level. The results show a statistically significant correlation between self-reported stress and users’ pupil dilation and pulse, indicating that stress measurements can indeed be conducted during the use of a head-mounted display. If this indication can be successfully proven in a larger scope, it will open up a new era of affective VR applications using individual and dynamic adjustments in the virtual environment.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 397
Author(s):  
Qimeng Zhang ◽  
Ji-Su Ban ◽  
Mingyu Kim ◽  
Hae Won Byun ◽  
Chang-Hun Kim

We propose a low-asymmetry interface to improve the presence of non-head-mounted-display (non-HMD) users in shared virtual reality (VR) experiences with HMD users. The low-asymmetry interface ensures that the HMD and non-HMD users’ perception of the VR environment is almost similar. That is, the point-of-view asymmetry and behavior asymmetry between HMD and non-HMD users are reduced. Our system comprises a portable mobile device as a visual display to provide a changing PoV for the non-HMD user and a walking simulator as an in-place walking detection sensor to enable the same level of realistic and unrestricted physical-walking-based locomotion for all users. Because this allows non-HMD users to experience the same level of visualization and free movement as HMD users, both of them can engage as the main actors in movement scenarios. Our user study revealed that the low-asymmetry interface enables non-HMD users to feel a presence similar to that of the HMD users when performing equivalent locomotion tasks in a virtual environment. Furthermore, our system can enable one HMD user and multiple non-HMD users to participate together in a virtual world; moreover, our experiments show that the non-HMD user satisfaction increases with the number of non-HMD participants owing to increased presence and enjoyment.


2017 ◽  
Vol 10 (5) ◽  
Author(s):  
Thorsten Roth ◽  
Martin Weier ◽  
André Hinkenjann ◽  
Yongmin Li ◽  
Philipp Slusallek

This work presents the analysis of data recorded by an eye tracking device in the course of evaluating a foveated rendering approach for head-mounted displays (HMDs). Foveated ren- dering methods adapt the image synthesis process to the user’s gaze and exploiting the human visual system’s limitations to increase rendering performance. Especially, foveated rendering has great potential when certain requirements have to be fulfilled, like low-latency rendering to cope with high display refresh rates. This is crucial for virtual reality (VR), as a high level of immersion, which can only be achieved with high rendering performance and also helps to reduce nausea, is an important factor in this field. We put things in context by first providing basic information about our rendering system, followed by a description of the user study and the collected data. This data stems from fixation tasks that subjects had to perform while being shown fly-through sequences of virtual scenes on an HMD. These fixation tasks consisted of a combination of various scenes and fixation modes. Besides static fixation targets, moving tar- gets on randomized paths as well as a free focus mode were tested. Using this data, we estimate the precision of the utilized eye tracker and analyze the participants’ accuracy in focusing the displayed fixation targets. Here, we also take a look at eccentricity-dependent quality ratings. Comparing this information with the users’ quality ratings given for the displayed sequences then reveals an interesting connection between fixation modes, fixation accuracy and quality ratings.


Author(s):  
Yu-Sheng Yang ◽  
Alicia M. Koontz ◽  
Yu-Hsuan Hsiao ◽  
Cheng-Tang Pan ◽  
Jyh-Jong Chang

Maneuvering a wheelchair is an important necessity for the everyday life and social activities of people with a range of physical disabilities. However, in real life, wheelchair users face several common challenges: articulate steering, spatial relationships, and negotiating obstacles. Therefore, our research group has developed a head-mounted display (HMD)-based intuitive virtual reality (VR) stimulator for wheelchair propulsion. The aim of this study was to investigate the feasibility and efficacy of this VR stimulator for wheelchair propulsion performance. Twenty manual wheelchair users (16 men and 4 women) with spinal cord injuries ranging from T8 to L2 participated in this study. The differences in wheelchair propulsion kinematics between immersive and non-immersive VR environments were assessed using a 3D motion analysis system. Subjective data of the HMD-based intuitive VR stimulator were collected with a Presence Questionnaire and individual semi-structured interview at the end of the trial. Results indicated that propulsion performance was very similar in terms of start angle (p = 0.34), end angle (p = 0.46), stroke angle (p = 0.76), and shoulder movement (p = 0.66) between immersive and non-immersive VR environments. In the VR episode featuring an uphill journey, an increase in propulsion speed (p < 0.01) and cadence (p < 0.01) were found, as well as a greater trunk forward inclination (p = 0.01). Qualitative interviews showed that this VR simulator made an attractive, novel impression and therefore demonstrated the potential as a tool for stimulating training motivation. This HMD-based intuitive VR stimulator can be an effective resource to enhance wheelchair maneuverability experiences.


2021 ◽  
Vol 17 (3) ◽  
pp. 422-430
Author(s):  
Federico Massini ◽  
Lars Ebert ◽  
Garyfalia Ampanozi ◽  
Sabine Franckenberg ◽  
Lena Benz ◽  
...  

AbstractEvidence acquisition, interpretation and preservation are essential parts of forensic case work that make a standardized documentation process fundamental. The most commonly used method for the documentation and interpretation of superficial wounds is a combination of two modalities: two-dimensional (2D) photography for evidence preservation and real-life examination for wound analysis. As technologies continue to develop, 2D photography is being enhanced with three-dimensional (3D) documentation technology. In our study, we compared the real-life examination of superficial wounds using four different technical documentation and visualization methods.To test the different methods, a mannequin was equipped with several injury stickers, and then the different methods were applied. A total of 42 artificial injury stickers were documented in regard to orientation, form, color, size, wound borders, wound corners and suspected mechanism of injury for the injury mechanism. As the gold standard, superficial wounds were visually examined by two board-certified forensic pathologists directly on the mannequin. These results were compared to an examination using standard 2D forensic photography; 2D photography using the multicamera system Botscan©, which included predefined viewing positions all around the body; and 3D photogrammetric reconstruction based on images visualized both on screen and in a virtual reality (VR) using a head-mounted display (HMD).The results of the gold standard examination showed that the two forensic pathologists had an inter-reader agreement ranging from 69% for the orientation and 11% for the size of the wounds. A substantial portion of the direct visual documentation showed only a partial overlap, especially for the items of size and color, thereby prohibiting the statistical comparison of these two items. A forest plot analysis of the remaining six items showed no significant difference between the methods. We found that among the forensic pathologists, there was high variability regarding the vocabulary used for the description of wound morphology, which complicated the exact comparison of the two documentations of the same wound.There were no significant differences for any of the four methods compared to the gold standard, thereby challenging the role of real-life examination and 2D photography as the most reliable documentation approaches. Further studies with real injuries are necessary to support our evaluation that technical examination methods involving multicamera systems and 3D visualization for whole-body examination might be a valid alternative in future forensic documentation.


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


Author(s):  
Gemma María Gea-García ◽  
Carmelo Fernández-Vicente ◽  
Francisco J. Barón-López ◽  
Jesús Miranda-Páez

Hiking is a very popular outdoor activity, and has led to an exponential increase in the number of visitors to natural spaces. The objective of this study was to analyze the circulation pattern of visitors to the Caminito del Rey trail, based on the three zones into which the trail can be divided. The sample consisted of 1582 hikers distributed into three different profiles. Of these, 126 utilized an eye-tracking device during the hike, while, for the rest (1456), only their travel speed along the trail was recorded. The use of eye tracking devices identified a greater number of interesting landscapes located in zones 1 and 3 of the trail, and it was observed that the mean travel speed was greater for zone 2 (42.31 m/min) (p < 0.01). Additionally, when the three different visitor profiles were analyzed, significant differences were found between the mean travel speeds according to sectors (p < 0.05). This information is crucial for more efficient management of the trail, as it allows for the development of measures to control and regulate the flow of visitors according to zone, and the design of additional strategies to increase the awareness of the hiker about specific areas of the hike.


2020 ◽  
pp. 1-27
Author(s):  
Katja I. Haeuser ◽  
Shari Baum ◽  
Debra Titone

Abstract Comprehending idioms (e.g., bite the bullet) requires that people appreciate their figurative meanings while suppressing literal interpretations of the phrase. While much is known about idioms, an open question is how healthy aging and noncanonical form presentation affect idiom comprehension when the task is to read sentences silently for comprehension. Here, younger and older adults read sentences containing idioms or literal phrases, while we monitored their eye movements. Idioms were presented in a canonical or a noncanonical form (e.g., bite the iron bullet). To assess whether people integrate figurative or literal interpretations of idioms, a disambiguating region that was figuratively or literally biased followed the idiom in each sentence. During early stages of reading, older adults showed facilitation for canonical idioms, suggesting a greater sensitivity to stored idiomatic forms. During later stages of reading, older adults showed slower reading times when canonical idioms were biased toward their literal interpretation, suggesting they were more likely to interpret idioms figuratively on the first pass. In contrast, noncanonical form presentation slowed comprehension of figurative meanings comparably in younger and older participants. We conclude that idioms may be more strongly entrenched in older adults, and that noncanonical form presentation slows comprehension of figurative meanings.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Peter Quax ◽  
Jeroen Dierckx ◽  
Bart Cornelissen ◽  
Wim Lamotte

The explosive growth of the number of applications based on networked virtual environment technology, both games and virtual communities, shows that these types of applications have become commonplace in a short period of time. However, from a research point of view, the inherent weaknesses in their architectures are quickly exposed. The Architecture for Large-Scale Virtual Interactive Communities (ALVICs) was originally developed to serve as a generic framework to deploy networked virtual environment applications on the Internet. While it has been shown to effectively scale to the numbers originally put forward, our findings have shown that, on a real-life network, such as the Internet, several drawbacks will not be overcome in the near future. It is, therefore, that we have recently started with the development of ALVIC-NG, which, while incorporating the findings from our previous research, makes several improvements on the original version, making it suitable for deployment on the Internet as it exists today.


Sign in / Sign up

Export Citation Format

Share Document