scholarly journals A hybrid approach for high precision prediction of gas flows

2021 ◽  
Author(s):  
Milena Petkovic ◽  
Ying Chen ◽  
Inken Gamrath ◽  
Uwe Gotzes ◽  
Natalia Selini Hadjidimitrou ◽  
...  

AbstractAbout 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition (“Energiewende”). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.

2021 ◽  
Vol 7 (3) ◽  
pp. 137-150
Author(s):  
Bruno Henrique Santos ◽  
João Abel Peças Lopes

Portugal has developed a national roadmap for hydrogen deployment as a key element of the Portuguese energy transition towards carbon neutrality, with a major contribution towards the electrification of society, generating synergies between the electric and gas systems. Considering the government goals for hydrogen injection within natural gas infrastructures for 2025 and 2030, as long as the indicative trajectories for 2040 and 2050, the authors used the natural gas forecast of the security of supply official report in order to obtain the hydrogen demand and power plant capacity, evaluating the system effort to meet public policy goals. Several alternative scenarios were developed for sensitive analysis, in order to assess the different strategies of hydrogen deployment, considering production from an electrolyzer. Regarding the current Portuguese situation and every scenario outcome, the authors stated that major efforts must be undertaken in order to develop full-scale hydrogen projects in order to meet the national goals.


2021 ◽  
Vol 11 (2) ◽  
pp. 500
Author(s):  
Fabrizio Pilo ◽  
Giuditta Pisano ◽  
Simona Ruggeri ◽  
Matteo Troncia

The energy transition for decarbonization requires consumers’ and producers’ active participation to give the power system the necessary flexibility to manage intermittency and non-programmability of renewable energy sources. The accurate knowledge of the energy demand of every single customer is crucial for accurately assessing their potential as flexibility providers. This topic gained terrific input from the widespread deployment of smart meters and the continuous development of data analytics and artificial intelligence. The paper proposes a new technique based on advanced data analytics to analyze the data registered by smart meters to associate to each customer a typical load profile (LP). Different LPs are assigned to low voltage (LV) customers belonging to nominal homogeneous category for overcoming the inaccuracy due to non-existent coincident peaks, arising by the common use of a unique LP per category. The proposed methodology, starting from two large databases, constituted by tens of thousands of customers of different categories, clusters their consumption profiles to define new representative LPs, without a priori preferring a specific clustering technique but using that one that provides better results. The paper also proposes a method for associating the proper LP to new or not monitored customers, considering only few features easily available for the distribution systems operator (DSO).


2021 ◽  
Vol 13 (12) ◽  
pp. 6949
Author(s):  
Gang Lin ◽  
Shaoli Wang ◽  
Conghua Lin ◽  
Linshan Bu ◽  
Honglei Xu

To mitigate car traffic problems, the United Nations Human Settlements Programme (UN-Habitat) issued a document that provides guidelines for sustainable development and the promotion of public transport. The efficiency of the policies and strategies needs to be evaluated to improve the performance of public transportation networks. To assess the performance of a public transport network, it is first necessary to select evaluation criteria. Based on existing indicators, this research proposes a public transport criteria matrix that includes the basic public transport infrastructure level, public transport service level, economic benefit level, and sustainable development level. A public transport criteria matrix AHP model is established to assess the performance of public transport networks. The established model selects appropriate evaluation criteria based on existing performance standards. It is applied to study the Stonnington, Bayswater, and Cockburn public transport network, representing a series of land use and transport policy backgrounds. The local public transport authorities can apply the established transport criteria matrix AHP model to monitor the performance of a public transport network and provide guidance for its improvement.


1985 ◽  
Vol 37 (3) ◽  
pp. 310-319 ◽  
Author(s):  
Milford B. Green ◽  
Matthew J. Sagers
Keyword(s):  

2018 ◽  
Vol 164 ◽  
pp. 01038
Author(s):  
Ridho Hantoro ◽  
Cahyun Budiono ◽  
Ronald Kipkoech Ketter ◽  
Nyoman Ade Satwika

Over 70 000 000 people in Indonesia have no access to electricity. This study was carried out in Bawean Islands which are located in the Java Sea about 150 km North of Surabaya, the headquarters of East Java. The study to determine the energy services available in the Bawean Island was done through interviewing a random sample of 72 households in two villages namely Komalasa and Lebak. Based on the average monthly electricity consumption of the sampled households connected to the grid, a hybrid renewable energy based electrical supply system was designed for Gili Timur Island, one of the satellite islands around Bawean Island. The system was designed with the aid of a time step simulation software used to design and analyze hybrid power systems. A sensitivity analysis was also carried out on the optimum system to study the effects of variation in some of the system variables. HOMER suggests that for the expected peak load of 131 kW, an optimum system will consist of 150 kW from PV array, two wind turbines each rated 10 kW, a 75 kW diesel generator and batteries for storage.


2021 ◽  
pp. 251484862098712
Author(s):  
Carlo Sica

The dire need for an energy transition to mitigate and reverse global warming is inspiring scholars to reexamine political influences on technological systems. The multi-level perspective of the socio-technical transitions framework acknowledges how technological systems are affected by the social and political landscapes where they are built. Energy landscapes literatures elaborate on the socio-technical transitions framework by explaining how the boundaries of landscapes are negotiated in the context of energy transitions. Energy scholars have found that negotiations over the form and purpose of energy landscapes frequently skew in favor of capital accumulation instead of social reproduction. Studies of landscapes in human geography and labor history have shown how the power imbalance energy scholars observed can be corrected by workers and their communities struggling against business owners and the state. Using archival data, I show how U.S. natural gas legislation in the postwar period was intended to limit coalminers’ demands for landscapes of social reproduction. This point matters because the vulnerabilities of industrial capitalism to energy worker organization could be exploited to push for a just and sustainable energy transition like the Green New Deal.


2021 ◽  
Author(s):  
Peter Adam

Abstract Hydrogen holds enormous potential in helping the world achieve its decarbonization goals and is set to play a key role in the Energy Transition. However, two central building blocks are needed to make the hydrogen economy a reality: 1) a sufficient source of emissions-free (i.e., blue or green) hydrogen production and 2) a needs-based transportation and storage network that can reliably and cost-effectively supply hydrogen to end-users. Given the high costs associated with developing new transportation infrastructure, many governments, pipeline operators, and regulatory bodies have begun exploring if it is both possible and economical to convert existing natural gas (i.e., methane) infrastructure for hydrogen operation. This paper outlines opportunities and technical challenges associated with such an endeavor – with a particular focus on adaptation requirements for rotating equipment/compressor drive trains and metallurgical and integrity considerations for pipelines.


2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2021 ◽  
Vol 65 (6) ◽  
pp. 79-85
Author(s):  
E. Telegina

Received 13.01.2021. The coronavirus pandemic has accelerated global economic, technological and social transformation, including the energy sector, and has given the impetus to energy transition from organic fuels to clean energy sources. Though oil will remain an important energy resource in the global energy balance, in the long run renewables will become the leading energy. The European Union and China are the leaders in implementation of energy transition strategies from fossil to clean energy. The transformation in the energy market has affected dramatically the relations between producers and consumers, who now actively determine the consumption trends (for example, green energy, electric vehicles, etc.). Distributed generation and blockchain in power industry enable the consumers to play an active part in the electricity production and distribution chains. Digital transformation and climate agenda are changing the structure of energy business from vertically integrated companies to knowledge-intensive networks. Investors almost unanimously vote for renewable energy. The largest oil and gas companies change their long-term strategies and transform into energy holdings with the prevailing share of renewables in the business structure. Hydrogen attracts particular attention as a promising energy source. The EU plans to develop hydrogen transport infrastructure. For its part, Russia has the ability to supply hydrogen to the European market through the existing gas pipelines. Coronacrisis accelerated the development of online services, artificial intelligence, and distant work. Education and telemedicine received a powerful impetus for further development. Еducation becomes continuous process in the digital world. New educational ecosystems in which skills and competencies are worked out on an interdisciplinary basis are formed. Digital transformation meets the expectations of the generation Z, which in the coming decades will become economically active and will dominate in social and economic agenda. Digitalization, adaptive nature-like technologies, environmentally friendly energy resources, flexible horizontal network between market participants are already a post-COVID reality.


Sign in / Sign up

Export Citation Format

Share Document