scholarly journals Understanding the morphology of MWCNT/PES mixed-matrix membranes using SANS: interpretation and rejection performance

2019 ◽  
Vol 9 (7) ◽  
Author(s):  
Km Nikita ◽  
P. Karkare ◽  
D. Ray ◽  
V. K. Aswal ◽  
Puyam S. Singh ◽  
...  

Abstract We describe the relationship between the morphology and rejection performance by the mixed-matrix membranes as a unique class of high water flux nanofiltration membranes comprising polyethersulfone/functionalized multiwalled carbon nanotubes (PES/f-MWCNTs). These membranes contain aligned MWCNTs uniformly distributed inside a PES matrix prepared using conventional phase-inversion technique. The small-angle neutron scattering analysis confirmed the high porosity and uniformity among of the pores of CNTs in the membranes. The frictionless water transport from vertically oriented f-MWCNTs were verified to facilitate remarkable enhancement in the water flux through the membranes. The water transportation speed, as well as rejection, of selected heavy metals increases nearly about 3 times and 2–3.5 times, respectively, than the pristine PES membrane, depending upon CNTs loading. Low working pressure and good retention properties make these membranes to be an ideal for the application of highly efficient filtration units.

RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 2211-2217 ◽  
Author(s):  
Bo Feng ◽  
Kai Xu ◽  
Aisheng Huang

Graphene oxide (GO) was incorporated into polyimide (PI) to fabricate GO/PI mixed matrix membranes (MMMs), which show a high water flux (36.1 kg m−2 h−1) and a high salt rejection (99.9%) for desalination of 3.5 wt% seawater at 90 °C.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 393
Author(s):  
Tanzila Anjum ◽  
Rahma Tamime ◽  
Asim Laeeq Khan

High-performance Mixed-Matrix Membranes (MMMs) comprising of two kinds of porous fillers UiO-66 and Zeolite 4Aand their combination were fabricated with polysulfone (PSf) polymer matrix. For the very first time, UiO-66 and Zeolite 4A were jointly used as nanofillers in MMMs with the objective of complimenting synergistic effects. The individual and complimentary effects of nanofillers were investigated on membrane morphology and performance, pure water flux, humic acid rejection, static humic acid adsorption, and antifouling properties of membranes. Scanning Electron Microscopy (SEM) analysis of membranes confirmed that all MMMs possessed wider macrovoids with higher nanofiller loadings than neat PSf membranes and the MMMs (PSf/UiO-66 and PSf/Zeolite 4A-UiO-66) showed tendency of agglomeration with high nanofiller loadings (1 wt% and 2 wt%). All MMMs exhibited better hydrophilicity and lower static humic acid adsorption than neat PSf membranes. Pure water flux of MMMs was higher than neat PSf membranes but the tradeoff between permeability and selectivity was witnessed in the MMMs with single nanofiller. However, MMMs with combined nanofillers (PSf/Zeolite 4A-UiO-66) showed no such tradeoff, and an increase in both permeability and selectivity was achieved. All MMMs with lower nanofiller loadings (0.5 wt% and 1 wt%) showed improved flux recovery. PSf/Zeolite 4A-UiO-66 (0.5 wt%) membranes showed the superior antifouling properties without sacrificing permeability and selectivity.


2019 ◽  
Vol 81 (7) ◽  
pp. 1354-1364 ◽  
Author(s):  
Maryam B. Alkindy ◽  
Vincenzo Naddeo ◽  
Fawzi Banat ◽  
Shadi W. Hasan

Abstract The treatment of oily wastewater continues to pose a challenge in industries worldwide. Membranes have been investigated recently for their use in oily wastewater treatment due to their efficiency and relatively facile operational process. Graphene oxide (GO) and silica (SiO2) nanoparticles have been found to improve membrane properties. In this study, a polyethersulfone (PES) based GO-SiO2 mixed matrix membrane (MMM) was fabricated, using the phase inversion technique, for the treatment of oil refinery wastewater. The PES/GO-SiO2 membrane exhibited the highest water flux (2,561 LMH) and a 38% increase in oil removal efficiency by comparison to a PES membrane. Compared to PES/GO and PES/SiO2 membranes, the PES/GO-SiO2 MMM also displayed the best overall properties in terms of tensile strength, water permeability, and hydrophilicity.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
R. Saranya ◽  
Y. Lukka Thuyavan ◽  
G. Arthanareeswaran

The influence of adsorbents like activated carbon (AC) and iron oxide nanoparticles (IO) on the filtration efficiency of polymeric ultrafiltration (UF) membranes is proposed to investigate by incorporating them in wt % of 0.25, 1.5 and 2.5 with cellulose acetate (CA). The completely homogenous CA/AC and CA/IO casting solutions were obtained by sonicating AC and IO, respectively in N, N’-dimethyl formamide (DMF) followed by mechanical stirring with CA. By dry/wet phase inversion technique, novel CA mixed matrix membranes (MMMs) were synthesized which were later evaluated for their characteristics using atomic force microscope (AFM), field emission scanning electron microscope (FESEM) and X-ray diffractometer (XRD). In comparison to the neat CA membrane, pure water flux of CA MMMs containing 2.5 wt % AC and 0.5 wt % IP were increased from 5.61 Lm-2h-1 to 11.22 and 7.17 Lm-2h-1, respectively. These results suggest that the higher addition of AC influenced the membrane permeability whereas the amount of IP is found not to be surpassed beyond 0.5 wt% for improved flux. The wettability found by contact angle analysis suggests the higher productivity of CA MMMs and are evident by the adsorption nature of the chosen fillers. The polymer enhanced UF studies for rejecting COD, BOD and dissolved salts from the textile industry effluent has also been performed. The significance of CA MMMs lies on higher rejection efficiency with no compromise in membrane permeability.


2019 ◽  
Vol 55 (49) ◽  
pp. 7101-7104 ◽  
Author(s):  
Chi Zhang ◽  
Baisong Liu ◽  
Gaimei Wang ◽  
Guangli Yu ◽  
Xiaoqin Zou ◽  
...  

Very selective and permeable membranes for hydrogen separation have been fabricated by hybridizing CAU-21 MOF with a small aperture and PIM-1 polymer with high porosity.


2017 ◽  
Vol 77 (2) ◽  
pp. 346-354 ◽  
Author(s):  
Pourya Moradihamedani ◽  
Abdul Halim Abdullah

Abstract Removal of low-concentration ammonia (1–10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.


2018 ◽  
Vol 31 (6) ◽  
pp. 671-678 ◽  
Author(s):  
Jiyang Liu ◽  
Miaoqing Liu ◽  
Jianjun Lu

More and more polyimide (PI) mixed matrix membranes (MMMs) have been reported for gas separation. In this study, a novel PI MMM, named as PI/SNW-1 and composed of PI and Schiff base network (SNW) type covalent organic frameworks (COFs) SNW-1, was used for gas permeation measurements of carbon dioxide (CO2) and methane (CH4). The prepared PI/SNW-1 was investigated by the Fourier transform infrared spectroscopy, the field emission scanning electron microscopy, and the thermal gravimetric analysis. The results indicated that PI/SNW-1 had maintained a high thermal stability and uniform distribution of filler. Compared with the pure PI membrane, MMMs showed an increment of 48.7% in ideal selectivity of CO2/CH4 and an enhancement of 106.4% in CO2 permeability at 5 wt% SNW-1. The enhancement of permeability and selectivity was mainly attributed to the high porosity of SNW-1, the specific sorption affinity for CO2, and the close interface interaction with the PI matrix. It can be seen that PI/SNW-1 has a great potential for actual gas separation.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1329
Author(s):  
Maijun Li ◽  
Zhibo Zheng ◽  
Zhiguang Zhang ◽  
Nanwen Li ◽  
Siwei Liu ◽  
...  

To improve the interfacial compatibility of mixed matrix membranes (MMMs) for gas separation, microporous polyimide particle (AP) was designed, synthesized, and introduced into intrinsic microporous polyimide matrix (6FDA-Durene) to form “all polyimide” MMMs. The AP fillers showed the feature of thermal stability, similar density with polyimide matrix, high porosity, high fractional free volume, large microporous dimension, and interpenetrating network architecture. As expected, the excellent interfacial compatibility between 6FDA-Durene and AP without obvious agglomeration even at a high AP loading of 10 wt.% was observed. As a result, the CO2 permeability coefficient of MMM with AP loading as low as 5 wt.% reaches up to 1291.13 Barrer, which is 2.58 times that of the pristine 6FDA-Durene membrane without the significant sacrificing of ideal selectivity of CO2/CH4. The improvement of permeability properties is much better than that of the previously reported MMMs, where high filler content is required to achieve a high permeability increase but usually leads to significant agglomeration or phase separation of fillers. It is believed that the excellent interfacial compatibility between the PI fillers and the PI matrix induce the effective utilization of porosity and free volume of AP fillers during gas transport. Thus, a higher diffusion coefficient of MMMs has been observed than that of the pristine PI membrane. Furthermore, the rigid polyimide fillers also result in the excellent anti-plasticization ability for CO2. The MMMs with a 10 wt.% AP loading shows a CO2 plasticization pressure of 300 psi.


Author(s):  
M. K. Chan ◽  
M. Letchumanan

Hydrophilic membranes exhibit good flux and low fouling tendency, which are the crucial criteria for a good membrane.  Attempts have been done by researchers over the past decades to enhance the hydrophilicity of membrane by using nanoparticles and grafting. However, these processes are tedious and costly. This study improves the hydrophilicity of cellulose acetate (CA) membranes by using ethylenediaminetetraacetic acid (EDTA) via simple blending method. Recent study showed that fouled membrane which was cleaned by EDTA exhibited high water flux performance. However, the use of EDTA in formulating a membrane has not been disclosed elsewhere. Thus, the objective of this study is to conduct a series of experiments to find out the role of EDTA in improving the hydrophilicity of CA membranes. Membranes with varying EDTA concentration were prepared via dry-wet phase inversion technique. Contact angle, porosity and water flux of the resultant membranes were determined. Additionally, the morphologies of the membranes were imaged using FESEM. Results showed that EDTA was a good pore former, which can be seen clearly from FESEM images. This explains for the high porosity properties in CA-EDTA membranes.  Membrane with 1 wt% of EDTA showed the highest water flux, which was ~15 L/(h.m2). Meanwhile, no water flux was observed after three hours when pure CA membrane was used in a dead-end filtration cell. In conclusion, EDTA is a promising additive in improving the hydrophilicity of membranes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Asif Jamil ◽  
Momina Zulfiqar ◽  
Usama Arshad ◽  
Subhan Mahmood ◽  
Tanveer Iqbal ◽  
...  

Membrane science is a state-of-the-art environmentally green technology that ascertains superior advantages over traditional counterparts for CO2 capture and separation. In this research, mixed matrix membranes (MMMs) comprising cellulose acetate (CA) with various loadings of bentonite (Bt) clay were fabricated by adopting the phase-inversion technique for CO2/CH4 and CO2/N2 separation. The developed pristine and MMMs were characterized for morphological, thermal, structural, and mechanical analyses. Several techniques such as scanning electron microscopy, thermogravimetric analysis, Fourier transformed infrared spectroscopy, and nano-indentation investigations revealed the promising effect of Bt clay in MMMs as compared to pristine CA membrane. Nano-indentation test identified that elastic modulus and hardness of the MMM with 1 wt. loading was increased by 64% and 200%, respectively, compared to the pristine membrane. The permeability decreased with the incorporation of Bt clay due to uniform dispersion of filler attributed to enhanced tortuosity for the gas molecules. Nevertheless, an increase in gas separation performance was observed with Bt addition up to 1 wt. loading. The opposite trend prevailed with increasing Bt concentration on the separation performance owing to filler agglomeration and voids creation. The maximum value of ideal selectivity (CO2/CH4) was achieved at 2 bar pressure with 1 wt. % Bt loading, which is 79% higher than the pristine CA membrane. For CO2/N2, the ideal selectivity was 123% higher compared to the pristine membrane with 1 wt. % Bt loading at 4 bar pressure.


Sign in / Sign up

Export Citation Format

Share Document