scholarly journals Effect of direct current on gas condensate droplet immersed in brine solution

2021 ◽  
Vol 11 (6) ◽  
pp. 2845-2860
Author(s):  
Princewill M. Ikpeka ◽  
Johnson O. Ugwu ◽  
Gobind G. Pillai ◽  
Paul Russell

AbstractEnvironmentally sustainable methods of extracting hydrocarbons from the reservoir are increasingly becoming an important area of research. Several methods are being applied to mitigate condensate banking effect which occurs in gas condensate reservoirs; some of which have significant impact on the environment (subsurface and surface). Electrokinetic enhanced oil recovery (EEOR) increases oil displacement efficiency in conventional oil reservoirs while retaining beneficial properties to the environment. To successfully apply this technology on gas condensate reservoirs, the behavior of condensate droplets immersed in brine under the influence of electric current need to be understood. A laboratory experiment was designed to capture the effect of electrical current on interfacial tension and droplet movement. Pendant drop tensiometry was used to obtain the interfacial tension, while force analysis was used to analyze the effect of the electrical current on droplet trajectory. Salinity (0–23 ppt) and electric voltage (0–46.5 V) were the main variables during the entire experiment. Results from the experiment reveal an increase in IFT as the voltage is increased, while the droplet trajectory was significantly altered with an increase in voltage. This study concludes that the interfacial tension increases progressively with an increase in DC current, until its effect counteracts the benefit obtained from the preferential movement of condensate droplet.

2000 ◽  
Vol 3 (02) ◽  
pp. 139-149 ◽  
Author(s):  
Li Kewen ◽  
Firoozabadi Abbas

Summary In a recent theoretical study, Li and Firoozabadi [Li, K. and Firoozabadi, A.: "Phenomenological Modeling of Critical-Condensate Saturation and Relative Permeabilities in Gas-Condensate Systems," paper SPE 56014 available from SPE, Richardson, Texas (2000)] showed that if the wettability of porous media can be altered from preferential liquid-wetting to preferential gas-wetting, then gas-well deliverability in gas-condensate reservoirs can be increased. In this article, we present the results that the wettability of porous media may indeed be altered from preferential liquid-wetting to preferential gas-wetting. In the petroleum literature, it is often assumed that the contact angle through liquid-phase ? is equal to 0° for gas-liquid systems in rocks. As this work will show, while ? is always small, it may not always be zero. In laboratory experiments, we altered the wettability of porous media to preferential gas-wetting by using two chemicals, FC754 and FC722. Results show that in the glass capillary tube ? can be altered from about 50 to 90° and from 0 to 60° by FC754 for water-air and normal decane-air systems, respectively. While untreated Berea saturated with air has a 60% imbibition of water, its imbibition of water after chemical treatment is almost zero and its imbibition of normal decane is substantially reduced. FC722 has a more pronounced effect on the wettability alteration to preferential gas-wetting. In a glass capillary tube ? is altered from 50 to 120° and from 0 to 60° for water-air and normal decane-air systems, respectively. Similarly, because of wettability alteration with FC722, there is no imbibition of either oil or water in both Berea and chalk samples with or without initial brine saturation. Entry capillary pressure measurements in Berea and chalk give a clear demonstration that the wettability of porous media can be permanently altered to preferential gas-wetting. Introduction In a theoretical work,1 we have modeled gas and liquid relative permeabilities for gas-condensate systems in a simple network. The results imply that when one alters the wettability of porous media from strongly non-gas-wetting to preferential gas-wetting or intermediate gas-wetting, there may be a substantial increase in gas-well deliverability. The increase in gas-well deliverability of gas-condensate reservoirs is our main motivation for altering the wettability of porous media to preferential gas-wetting. Certain gas-condensate reservoirs experience a sharp drop in gas-well deliverability when the reservoir pressure drops below the dewpoint.2–4 Examples include many rich gas-condensate reservoirs that have a permeability of less than 100 md. In these reservoirs, it seems that the viscous forces alone cannot enhance gas-well deliverability. One may suggest removing liquid around the wellbore via phase-behavior effects through CO2 and propane injection. Both have been tried in the field with limited success; the effect of fluid injection around the wellbore for the removal of the condensate liquid is temporary. Wettability alteration can be a very important method for the enhancement of gas-well deliverability. If one can alter the wettability of the wellbore region to intermediate gas-wetting, gas may flow efficiently in porous media. As early as 1941, Buckley and Leverett5 recognized the importance of wettability on water flooding performance. Later, many authors studied the effect of wettability on capillary pressure, relative permeability, initial water saturation, residual oil saturation, oil recovery, electrical properties of reservoir rocks, reserves, and well stimulation.6–16 reported that it might be possible to improve oil displacement efficiency by wettability adjustment during water flooding. In 1967, Froning and Leach8 reported a field test in Clearfork and Gallup reservoirs for improving oil recovery by wettability alteration. Kamath9 then reviewed wettability detergent flooding. He noted that it was difficult to draw a definite conclusion regarding the success of detergent floods from the data available in the literature. Penny et al.12 presented a technique to improve well stimulation by changing the wettability for gas-water-rock systems. They added a surfactant in the fracturing fluid. This yielded impressive results; the production following cleanup after fracturing in gas wells generally was 2 to 3 times greater than field averages or offset wells treated with conventional techniques. Penny et al.12 believed that increased production was due to wettability alteration. However, they did not demonstrate that wettability had been altered. Recently, Wardlaw and McKellar17 reported that only 11% pore volume (PV) water imbibed into the Devonian dolomite samples with bitumen. The water imbibition test was conducted vertically in a dry core (saturated with air). Based on the imbibition experiments, they pointed out that many gas reservoirs in the western Alberta foothills of the Rocky Mountains were partially dehydrated and their wettability altered to a weakly water-wet or strongly oil-wet condition due to bitumen deposits on the pores. The water imbibition results of Wardlaw and McKellar17 demonstrated that the inappropriate hypothesis for wetting properties of gas reservoirs might lead to underestimation of hydrocarbon reserves.


1964 ◽  
Vol 4 (03) ◽  
pp. 231-239 ◽  
Author(s):  
A.S. Michaels ◽  
Arnold Stancell ◽  
M.C. Porter

MICHAELS, A.S., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. MEMBER AIME STANCELL, ARNOLD, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. PORTER, M.C., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. Abstract Previous laboratory studies have demonstrated that the injection of small quantities of reverse wetting agents during water displacement can increase oil recovery from unconsolidated porous media. In the present investigation, an attempt has been made to determine more fully the effects of reverse wetting treatments and to clarify the mechanism by which increased oil recovery is effected Water-oil displacements were performed in beds of 140–200 mesh silica sand. Hexylamine slugs (injected after 0.25 pore volume of water through put), when adequate in size and concentration, were effective in promoting additional oil recovery. Their effectiveness increased with the quantity of amine injected. However, slugs of sufficient size and concentration to stimulate oil production at water flow rates of 34 ft/day did not do so at 4 ft/day.Visual studies in a glass grid micromodel have shown that the stimulation of oil production, via aqueous bexylamine, is a result of transient changes in the oil wettability of the pore walls. If the am in e slug is of sufficient size and concentration to induce significant changes in the adhesion-tension, large continuous oil masses will be formed. If the superficial water velocity is high enough to result in rapid desorption of the am in e, a favorable "wettability gradient" may be established across the masses; under such conditions, high oil mobility is observed, and increased oil recovery results. Introduction It is generally agreed that the efficiency of oil displacement by water in porous media is limited in part by capillary forces which cause the retention of isolated masses of oil - resulting in the so-called "irreducible minimum oil saturation". Recent estimates indicate that there are about 220 billion bbl of petroleum in United States reservoirs which are not economically recoverable with present techniques (such as water flooding). This amounts to almost five times the known recoverable reserves. It has been recognized for some time that a suitable alteration in the water-oil interfacial tension and/or the contact angle, as measured between the water-oil interface and the solid surface, should result in better displacement efficiency. Surface active agents can be used as interfacial tension depressants to accomplish this objective, but unfortunately, the additional oil recovery is seldom commensurate with the treatment cost.In contrast to interfacial tension depressants, the effect of contact angle alterations on water- oil displacements has received relatively little attention in the literature. It is known that the wettability affects the displacement process. Displacements in water-wet systems generally result in lower residual oil saturations than those in oil-wet systems. The effect of "transient" wettability alterations concurrent with the displacement process have been investigated by Wagner, Leach and coworkers, wherein it has been demonstrated that the establishment of water- wet conditions during water flooding of oil-wet, oil-saturated porous media is accompanied by significant increase in oil displacement efficiency. Michaels and Timmins studied the effects of transient contact angle alterations resulting from chromatographic transport of reverse wetting agents through unconsolidated sand. It was demonstrated that chromatographic transport of short-chain (C4 through C8) primary aliphatic amines can improve oil recovery and that the recovery increases with the quantity of amine injected (i.e., with either the amine concentration or the volume of the slug injected). Circumstantial evidence indicated that the increased displacement efficiency resulted primarily from transient changes in wettability of the porous medium.In the present investigation, additional information has been obtained on the effects of reverse wetting treatments and the mechanism by which increased oil recovery is accomplished. SPEJ P. 231^


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3045 ◽  
Author(s):  
Jun Pu ◽  
Xuejie Qin ◽  
Feifei Gou ◽  
Wenchao Fang ◽  
Fengjie Peng ◽  
...  

After primary and secondary oil recovery, CO2-enhanced oil recovery (EOR) has become one of the most mentioned technologies in tertiary oil recovery. Since the oil is confined in an unconventional reservoir, the interfacial properties of CO2 and oil are different from in conventional reservoirs, and play a key role in CO2 EOR. In this study, molecular dynamics simulations are performed to investigate the interfacial properties, such as interfacial tension, minimum miscibility pressure (MMP), and CO2 solubility. The vanishing interfacial tension method is used to get the MMP (~10.8 MPa at 343.15 K) which is in agreement with the reported experimental data, quantitatively. Meanwhile, the diffusion coefficients of CO2 and n-octane under different pressures are calculated to show that the diffusion is mainly improved at the interface. Furthermore, the displacement efficiency and molecular orientation in α-quartz nanoslit under different CO2 injection ratios have been evaluated. After CO2 injection, the adsorbed n-octane molecules are found to be displaced from surface by the injected CO2 and, then, the orientation of n-octane becomes more random, which indicates that and CO2 can enhance the oil recovery and weaken the interaction between n-octane and α-quartz surface. The injection ratio of CO2 to n-octane is around 3:1, which could achieve the optimal displacement efficiency.


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Xiang'an Yue ◽  
Jirui Zou ◽  
Lijuan Zhang ◽  
Kang Tang

Abstract In this study, a visualized physical model of artificial oil film was firstly designed to investigate the oil film displacement mechanisms. Numerous comparative experiments were conducted to explore the detachment mechanisms of oil film and oil recovery performances in different fluid mediums with flow rate. In addition, the of influencing factors of oil film were comprehensively evaluated, which mainly includes: flow rate, surfactant behaviors, and crude oil viscosity. The results show that, (1) regardless of the viscosity of crude oil, flow rate presents a limited contribution to the detachment of oil film and the maximum of ultimate oil film displacement efficiency is only approximately 10%; (2) surfactant flooding has a synergistic effect on the oil film displacement on two aspects of interfacial tension (ITF) reduction and emulsifying capacity. Giving the most outstanding performance for two oil samples in all runs, IFT reduction of ultra-low value is not the only decisive factor affecting oil film displacement efficiency, but the emulsifying capability plays the key role to the detachment of oil film due to effect of emulsifying and dispersing on oil film; (3) the increasing flow rate of surfactant flooding is able to enhance the detachment of oil film but has an objective effect on the final oil film displacement efficiency; (4) flow rate have the much influence on the detachment of oil film, but the most easily controlled factor is the surfactant property. The finding provides basis for oil film detachment and surfactant selection EOR application.


1999 ◽  
Vol 2 (04) ◽  
pp. 393-402 ◽  
Author(s):  
H.L. Chen ◽  
S.D. Wilson ◽  
T.G. Monger-McClure

Summary Coreflood experiments on gas condensate flow behavior were conducted for two North Sea gas condensate reservoirs. The objectives were to investigate the effects of rock and fluid characteristics on critical condensate saturation (CCS), gas and condensate relative permeabilities, hydrocarbon recovery and trapping by water injection, and incremental recovery by subsequent blowdown. Both CCS and relative permeability were sensitive to flow rate and interfacial tension. The results on gas relative permeability rate sensitivity suggest that gas productivity curtailed by condensate dropout can be somewhat restored by increasing production rate. High interfacial tension ultimately caused condensate relative permeability to decrease with increasing condensate saturation. Condensate immobile under gas injection could be recovered by water injection, but more immediate and efficient condensate recovery was observed when the condensate saturation prior to water injection exceeded the CCS. Subsequent blowdown recovered additional gas, but incremental condensate recovery was insignificant. Introduction Reservoirs bearing gas condensates are becoming more commonplace as developments are encountering greater depths, higher pressures, and higher temperatures. In the North Sea, gas condensate reservoirs comprise a significant portion of the total hydrocarbon reserves. Accuracy in engineering computations for gas condensate systems (e.g., estimating reserves, sizing surface facilities, and predicting productivity trends) depends upon a basic understanding of phase and flow behavior interrelationships. For example, gas productivity may be curtailed as condensate accumulates by pressure depletion below the dew point pressure (Pd). Conceptual modeling on gas condensate systems suggests that relative permeability (kr) curves govern the magnitude of gas productivity loss.1,2 Unfortunately, available gas and condensate relative permeability (krg and krc) results for gas condensates are primarily limited to synthetic systems. Such results show that higher CCS and less krg reduction were observed for a conventional gas/oil system compared to a gas condensate system.3,4 If condensate accumulates as a continuous film due to low interfacial tension (IFT), then high IFT gas/oil and water/oil kr data may not be applicable to gas condensates.5 Water invasion of gas condensate reservoirs may enhance hydrocarbon recovery or trap potential reserves. Laboratory results suggest water invasion of low IFT gas condensates may not be represented using high IFT water/oil and water/gas displacements.6 Subsequent blowdown may remobilize hydrocarbons trapped by water invasion. The presence of condensate may hinder gas remobilization, thus conventional gas/water blowdown experiments may not be appropriate in evaluating the feasibility of depressurization for gas condensates.7,8 Other laboratory evaluations of gas condensate flow behavior indicate measured results depend upon experimental procedures, fluid properties, and rock properties.3,9–20 Factors to consider include the history of condensate formation (i.e., imbibition or drainage), how condensate was introduced (i.e., in-situ dropout versus external injection or inflowing gas), flow rate, differential pressure, system pressure, IFT, connate water saturation, core permeability, and core orientation. Experiments performed to evaluate the consequences of water invasion suggest optimum conditions depend upon IFT, initial gas saturation, and core permeability.7,21,22 Reported blowdown experiments imply gas recovery depends upon the degree of gas expansion.7,8 The kr results obtained in this study represent gas condensate flow between the far-field and the near-wellbore region. The results are useful input for numerical simulation, especially to test rate- or IFT-sensitive relative permeability functions. Results on hydrocarbon recovery and trapping from water injection and blowdown are beneficial in evaluating improved recovery options for gas condensates. Experimental Procedures Coreflooding experiments were performed under reservoir conditions using rock and fluid samples from two distinct North Sea gas condensate reservoirs. A detailed description of the experimental methods is provided in the Appendix. Briefly, the experiments were conducted in a horizontal coreflood apparatus equipped with in-line PVT and viscosity measuring devices. The entire system experienced in-situ condensate drop out by constant volume depletion (CVD) from above Pd to either the pressure corresponding to CCS, or to the pressure of maximum condensate saturation Scmax Steady-state krg was measured by injecting equilibrated gas (before CCS). Steady-state krg and krc were measured by injecting gas condensate repressurized to above Pd (after CCS). The gas/oil fractional flow rate was defined by the pressure level in the core which was controlled by the core outlet back-pressure regulator. During krg measurements, the injection rate was varied to access rate effects. After the krg or krg and krc measurements to Scmax were completed, water injection was performed to quantify hydrocarbon trapping and recovery. Blowdown followed to evaluate additional hydrocarbon recovery. Recombined Reservoir Fluid Properties. Two North Sea gas condensate reservoir fluids were recombined using separator oil and synthetic gas. Tables 1 and 2 list compositions and PVT properties for the reconstituted fluids. The Pd was 7,070 psig at 250°F for Reservoir A, and 6,074 psig at 259°F for Reservoir B (Table 2). The maximum liquid dropout under constant composition expansion (CCE) was 31.7% for Reservoir A, and 42.5% for Reservoir B (Fig. 1). Reservoir B is a richer gas condensate and exhibits more near-critical phase behavior than Reservoir A.


2019 ◽  
Vol 131 (3) ◽  
pp. 805-830 ◽  
Author(s):  
Gang Wang ◽  
Gillian E. Pickup ◽  
Kenneth S. Sorbie ◽  
Eric J. Mackay

AbstractThis study seeks to improve numerical simulations of the key physics occurring in CO2 enhanced oil recovery (CO2-EOR) processes, with a particular focus on the transition from immiscible to miscible displacements. In the previous work, we have investigated interactions between compositional effects and the underlying heterogeneities of the flow field in near-miscible floods (Wang et al. in Transp Porous Media 129(3):743–759, 2019a). In this current study, we have further analysed the effects of reduction in interfacial tension (IFT) on the flow behaviour, as motivated by the study on the film-flow mechanism previously presented by Sorbie and van Dijke (SPE improved oil recovery symposium, Society of Petroleum Engineers, 2010). We identify two clear mechanisms of oil recovery that may occur in near-miscible CO2 (or other gas) injection processes, which we denote, MCE, as oil stripping or conventional compositional effects, and MIFT as lower IFT oil film-flow effects. The latter MIFT effects are described by an enhanced hydrocarbon relative permeability in the near-miscible three-phase relative permeabilities (3PRP). Various combinations between the MCE and MIFT mechanisms were tested by numerical simulations to evaluate the impact of each mechanism on the flow behaviour, i.e. their separate and joint effects on quantities such as the local oil displacement efficiency, phase flow vectors and the ultimate oil recovery. When acting in combination, the oil stripping and IFT effects can greatly improve the local displacement performance even when viscous fingering flow occurs. Viscous fingering is well known to lead to bypassed oil in the “non-preferential” flow paths between the main fingers. We show that the remaining oil in these non-preferential flow paths (i.e. bypassed oil) can be efficiently recovered by the combined MCE and MIFT mechanisms, but only with the application of water alternating gas (WAG). In contrast to oil stripping effects, the IFT effect is not dependent on continuous contact between oil and CO2. Instead, the remaining oil is mobilized by gas as the IFT is reduced and can be efficiently produced by subsequent water injection. This MIFT mechanism has much less impact in cases with continuous CO2 injection compared to its efficiency in WAG. This is because during continuous injection, gas fingers are dominant in the preferential flow paths, and therefore the local displacement efficiency is very good, but only in these preferential routes. On the other hand, WAG is able to make full use of the IFT effects because of its relatively stable displacing front, which allows the MIFT mechanism to contribute. In this study, the effects of using different three-phase relative permeability methods were investigated and, as expected, different methods yielded different results. However, an important observation is that when IFT effects (MIFT) were included, there was much less difference in the final oil recovery using the different 3PRP models; our analysis shows why this is the case.


2021 ◽  
pp. 014459872199654
Author(s):  
Yu Bai ◽  
Shangqi Liu ◽  
Guangyue Liang ◽  
Yang Liu ◽  
Yuxin Chen ◽  
...  

Wormlike micelles formed by amidosulfobetaine surfactants present advantage in increasing viscosity, salt-tolerance, thermal-stability and shear-resistance. In the past few years, much attention has been paid on rheology behaviours of amidosulfobetaine surfactants that normally bear C18 or shorter tails. Properties and oil displacement performances of the wormlike micelles formed by counterparts bearing the long carbon chain have not been well documented. In this paper, the various properties of C22-tailed amidosulfobetaine surfactant EHSB under high salinity (TDS = 40g/L) are investigated systematically, including solubility, rheology and interfacial activity. Moreover, its oil displacement performance is studied for the first time. These properties are first compared with those of C16-tailed counterpart HDPS. Results show that the Krafft temperature( TK) of EHSB decreases from above 100°C to 53°C with the increase of TDS to 40 g/L. Increasing concentration of EHSB in the semidilute region induces micelle growth from rod-like micelles to wormlike micelles, and then the worms become entangled or branched to form viscoelastic micelle solution, which will increase the viscosity by several orders of magnitude. The interfacial tension with oil can be reduced to ultra-low level by EHSB solution with concentration below 4.5 mM. Possessing dual functions of mobility control and reducing interfacial tension, wormlike micelles formed by EHSB present a good displacement effect as a flooding system, which is more than 10% higher than HPAM with the same viscosity. Compared with the shorter tailed surfactant, the ultra-long tailed surfactant is more efficient in enhancing viscosity and reducing interfacial tension, so as to enhance more oil recovery. Our work provides a helpful insight for comprehending surfactant-based viscoelastic fluid and provides a new viscoelastic surfactant flooding agent which is quite efficient in chemical flooding of offshore oilfield.


1976 ◽  
Vol 16 (03) ◽  
pp. 147-160 ◽  
Author(s):  
R.N. Healy ◽  
R.L. Reed ◽  
D.G. Stenmark

Abstract Economical microemulsion flooding inevitably involves microemulsion phases immiscible with oil or water, or both; oil recovery is largely affected by displacement efficiency during the immiscible regime. Therefore, it is essential to understand the role of interfacial tension in relation to multiphase microemulsion behavior. Three basic types of multiphase systems are identified and used to label phase transitions that occur when changes are made in salinity, temperature, oil composition, surfactant structure, cosolvent, and dissolved solids in the aqueous phase. Directional effects of these changes on phase behavior, interfacial tension, and solubilization parameter are tabulated for the alkyl aryl sufonates studied. A relationship between interfacial tension and phase behavior is established. This provides the phase behavior is established. This provides the basis for a convenient method for preliminary screening of surfactants for oil recovery. Interfacial tensions were found to correlate with the solubilization parameter for the various microemulsion phases, a result that can substantially reduce the number of interfacial tensions that must be determined experimentally for a given application. Introduction A previous paper established that microemulsion flooding is a locally miscible process until slug breakdown and is an immiscible, rate-dependent displacement thereafter; furthermore, for an effective flood, most of the oil recovered is acquired during the immiscible regime. An extensive study of single-phase regions defined classes of micellar structures for a particular surfactant; however, it was subsequently shown these did not affect oil recovery, provided viscous, lamellar structures were avoided. Optimal salinity was introduced as defining a ternary diagram having the least extensive multiphase region, a desirable feature in that locally miscible displacement is prolonged. Immiscible displacement after slug breakdown is known to depend on interfacial tension through its inclusion in the capillary number. A brief study showed chat interfacial tension varied widely throughout the multiphase region; accordingly, it is anticipated that oil recovery will depend on details of multiphase behavior in relation to interfacial tension, as well as on injection composition. Consider a flood sufficiently advanced that the microemulsion slug has broken down. A microemulsion phase remains that is immiscible with water or oil, phase remains that is immiscible with water or oil, or both, and displacement has assumed an immiscible character. The problem is twofold: to design a microemulsion slug that effectively displaces oil at the front and that is effectively displaced by water at the back. Both aspects are essential and, therefore, both microemulsion-oil and microemulsion-water interfacial tensions must be very low. The condition where these two tensions are low and equal will be of particular significance. The purpose of this paper is to explore physicochemical properties of multiphase physicochemical properties of multiphase microemulsion systems with a view toward understanding immiscible aspects of microemulsion flooding, and with the expectation of developing systematic screening procedures useful for design of optimal floods. Equilibration is an essential part of this study. Even the simplest of these systems is so complex it may well happen that nonequilibrium effects will never be understood sufficiently to be usefully accommodated in mathematical simulation of microemulsion flooding. In any event, equilibration, although time consuming, leads to a coherent picture of multiphase behavior that can be correlated with flooding results. Multiphase behavior of "simple" ternary systems divides into three basic classes. Dependence of phase behavior on salinity, with respect to these phase behavior on salinity, with respect to these classes, leads to correlations of interfacial tension with the solubilization parameter. These correlations are studied in relation to surfactant structure, temperature, cosolvents, oil composition, and brine composition. Optimal salinity again plays an important role, especially in relation to interfacial tension. SPEJ P. 147


Sign in / Sign up

Export Citation Format

Share Document