scholarly journals Study on gelation, temperature resistance and micromorphology of modified nano-ZrO2 crosslinked hydroxypropyl guar gum

Author(s):  
Yang Yang ◽  
Chen Qi ◽  
Zhu Chao ◽  
Wu Xiaolong ◽  
Ji Zhe ◽  
...  

AbstractIn order to improve the temperature and shear resistance of fracturing fluid, a kind of nano-zirconium-boron crosslinker, which is different from the traditional zicral-boron crosslinker, is prepared using 4wt% borax, 50 v/v% glycerol, 8 v/v% triethanolamine and 40 v/v % acetylacetone as raw materials, and its chemical structure is characterized of by infrared spectroscopy and its performance, such as viscoelasticity, temperature and shear resistance and gel breaking property, have also been evaluated. The results show that firstly the elastic modulus of the fracturing system is much larger than the viscous modulus at frequency of 0.1–10 Hz, indicating that the fluid is a typical structural fluid. Secondly the fracture fluid crosslinked by nano-zirconium-boron crosslinker is sheared at 180 °C, 170 s−1 for 2 h, and the viscosity is maintained above 60 mPa.s. Finally viscoelasticity, gel breaking property and damage evaluation also meet the requirements of national standard code for Chinese. Analysis of the temperature resistance mechanism of the HPG fracturing fluid crosslinked by nano-zirconium-boron crosslinker shows that its connecting lines are thicker and stronger to make the fracturing fluid have better temperature and shear resistance.

RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53290-53300 ◽  
Author(s):  
Haiming Fan ◽  
Zheng Gong ◽  
Zhiyi Wei ◽  
Haolin Chen ◽  
Haijian Fan ◽  
...  

A facile procedure has been proposed to evaluate the temperature–resistance performance of fracturing fluids, which was used to understand the temperature–tolerance performance of a borate cross-linked hydroxypropyl guar gum fracturing fluid.


2012 ◽  
Vol 602-604 ◽  
pp. 1238-1242 ◽  
Author(s):  
Guan Jun Liu ◽  
Xiao Rui Li ◽  
Li Jun Zheng

An anionic surfactant clean fracturing fluid was synthesized and its main performance was studied. The viscosity of fracturing fluid increased with increasing dosage of anionic surfactant. And the viscosity of fracturing fluid increased first, and then decreased with increasing concentration of KCl. The viscosity reached maximum 360 mPa•s when the KCl content is 2.7%. The results showed that the fracturing fluid had best temperature resistance and shear resistance performance under the condition of 100°C and at the shearing rate of 170 s-1. The sedimentation velocity of sand in the fracturing fluid are about 11.124, 18.840 mm/min at the temperature of 80°C and 120°C respectively. It indicated that the fracturing fluid has a better sand-carrying performance. The viscosity of fracturing fluid decreased below 5 mPa•s during 70 minutes when the dosage of kerosene was 3%, and the surface tension of the breaker fluid is 26.10 mN/m while the interfacial tension is 0.73mN/m. The low surface tension can meet the requirements of operation. The damage rate to the core is 7.65% and the fracturing fluid has lower damage to core than guar gel.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Chengli Zhang ◽  
Peng Wang ◽  
Guoliang Song

The clean fracturing fluid, thickening water, is a new technology product, which promotes the advantages of clean fracturing fluid to the greatest extent and makes up for the deficiency of clean fracturing fluid. And it is a supplement to the low permeability reservoir in fracturing research. In this paper, the study on property evaluation for the new multicomponent and recoverable thickening fracturing fluid system (2.2% octadecyl methyl dihydroxyethyl ammonium bromide (OHDAB) +1.4% dodecyl sulfonate sodium +1.8% potassium chloride and 1.6% organic acids) and guar gum fracturing fluid system (hydroxypropyl guar gum (HGG)) was done in these experiments. The proppant concentration (sand/liquid ratio) at static suspended sand is up to 30% when the apparent viscosity of thickening water is 60 mPa·s, which is equivalent to the sand-carrying capacity of guar gum at 120 mPa·s. When the dynamic sand ratio is 40%, the fracturing fluid is not layered, and the gel breaking property is excellent. Continuous shear at room temperature for 60 min showed almost no change in viscosity. The thickening fracturing fluid system has good temperature resistance performance in medium and low temperature formations. The fracture conductivity of thickening water is between 50.6 μm2·cm and 150.4 μm2·cm, and the fracture conductivity damage rate of thickening water is between 8.9% and 17.9%. The fracture conductivity conservation rate of thickening water is more than 80% closing up of fractures, which are superior to the guar gum fracturing fluid system. The new wells have been fractured by thickening water in A block of YC low permeability oil field. It shows that the new type thickening water fracturing system is suitable for A block and can be used in actual production. The actual production of A block shows that the damage of thickening fracturing fluid is low, and the long retention in reservoir will not cause great damage to reservoir.


2011 ◽  
Vol 415-417 ◽  
pp. 652-655
Author(s):  
Jie Zhang ◽  
Gang Chen

For gelating agent in hydraulic fracturing fluid, the temperature resistance is required. To improve the temperature resistance of Guar gum (GG), it was modified by silanization. The reaction conditions were investigated, and the optimized conditions were as following: the reaction temperature of 85°C, 5: 1 molar ratio of guar gum to TMS-Cl and 4-6 h of reaction time. The viscosity of silanized guar gum (SGG) aqueous gel was greatly improved even high temperature at 80°C.


2021 ◽  
Author(s):  
Kaiyu Zhang ◽  
Jirui Hou ◽  
Zhuojing Li

Abstract The low and ultra-low permeability reservoirs in China, such as the Changqing, Jidong, and Daqing peripheral oil fields, often apply CO2 as a flooding medium to enhance oil recovery. A serial of water-rock interactions will be occurred among the CO2, formation rock, and formation water under the HT/HP conditions. The pH value of the formation will be converted to acidity accordingly. As a side effect, the traditional guar-based fracturing fluids in an alkaline range, such as the borate cross-linked hydroxypropyl guar gum (HPG), cannot result in an effective hydrofracturing operation due to the incompatibility. Consequently, developing an acidic fracturing fluid system with a satisfactory performance is an imperative. Acidic fracturing fluids, such as the zirconium cross-linked carboxymethyl hydroxypropyl guar gum (CMHPG), can protect the formation during the hydrofracturing process from the damage arising from the swelling and migration of the clay particles. However, the shortcomings of the uncontrollable viscosity growth and the irreversible shear-thinning behavior limit the large-scale use of the acidic fracturing fluids. In this work, a novel organic zirconium cross-linker synthesized in the laboratory was applied to control and delay the cross-link reaction under the acidic condition. The ligands coordinated to the zirconium center were the L-lactate and ethylene glycol. The thickener used was the CMHPG at a low loading of 0.3% (approximately 25 pptg). Meanwhile, the surface functionalized metallic phase (1T-phase) molybdenum disulfide (MoS2) nanosheets were employed to improve the rheological performance of the zirconium cross-linked CMHPG fracturing fluid. The modification reagent utilized was the L-cysteine. The morphology, structure, and property of the fabricated functionalized 1T-MoS2 (Cys-1T-MoS2) nanosheets were systematically characterized using the transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements. The results of the characterization tests demonstrated a successful functionalization of the 1T-MoS2 nanosheets with L-cysteine. Then, the effects of this new nanosheet-enhanced zirconium cross-linked CMHPG fracturing fluid systems with different cross-linker and nanosheet loadings on gelation performance were systematically assessed employing the Sydansk bottle testing method combined with a rheometer under the controlled-stress or controlled-rate modes. The results indicated that the nanosheet-enhanced fracturing fluid had a desirable delayed property. Compared with the blank fracturing fluid (without nanosheets), the nanosheet-enhanced fracturing fluid had a much better shear-tolerant and shear-recovery performance.


2014 ◽  
Vol 1028 ◽  
pp. 84-89
Author(s):  
Chao Wang ◽  
Jian Ouyang ◽  
Zhuo Yan Zhu ◽  
Gui Fu Duan ◽  
Feng Wang ◽  
...  

A novel dendritic thickening agent has been prepared on account of the poor temperature resistance performance and other shortcomings of conventional polymer thickening agent (HPAM), and has evaluated its monomer proportioning and the performance of formed fracturing fluid. Accordingly, it has derived that, when the concentration of the polar monomer AMPS and the functional monomer GL is 30% and 1%, respectively, this novel dendritic thickening agent is able to maintain the excellent temperature resistance and shear resistance of the fracturing fluid system at lower concentrations. The optimal formula of the formed fracturing fluid is: 0.4% thickening agent +0.15% pH adjusting agent +0.25% crosslinking agent +0.1% discharge aiding agent. Under the conditions of 170s-1and 150°C, it has tested its temperature resistance and shear resistance properties, and the final viscosity after shearing for 2h was 147.6 mPa.s. The gel breaking liquid is characterized by low viscosity, low surface tension, low interfacial tension, little residue content, and is conductive to the smooth flowback of the gel breaking liquid after fracturing construction. Compared with the conventional guanidine gum fracturing fluid system, this novel dendritic thickening agent fracturing fluid system has much lower residue content.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247948
Author(s):  
Shiliang Xu ◽  
Mengke Cui ◽  
Renjie Chen ◽  
Qiaoqing Qiu ◽  
Jiacai Xie ◽  
...  

With the increasing demand for energy, fracturing technology is widely used in oilfield operations over the last decades. Typically, fracturing fluids contain various additives such as cross linkers, thickeners and proppants, and so forth, which makes it possess the properties of considerably complicated components and difficult processing procedure. There are still some difficult points needing to be explored and resolved in the hydroxypropyl guar gum (HPG) removal process, e.g., high viscosity and removal of macromolecular organic compounds. Our works provided a facile and economical HPG removal technology for fracturing fluids by designing a series of processes including gel-breaking, coagulation and precipitation according to the diffusion double layer theory. After this treatment process, the fracturing fluid can meet the requirements of reinjection, and the whole process was environment friendly without secondary pollution characteristics. In this work, the fracturing fluid were characterized by scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy technologies, etc. Further, the micro-stabilization and destabilization mechanisms of HPG in fracturing fluid were carefully investigated. This study maybe opens up new perspective for HPG removal technologies, exhibiting a low cost and strong applicability in both fundamental research and practical applications.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3133
Author(s):  
Yuling Meng ◽  
Fei Zhao ◽  
Xianwei Jin ◽  
Yun Feng ◽  
Gangzheng Sun ◽  
...  

Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.


Sign in / Sign up

Export Citation Format

Share Document