Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model

2016 ◽  
Vol 7 (2) ◽  
pp. 206-216 ◽  
Author(s):  
Alexander Ewe ◽  
Sabrina Höbel ◽  
Claudia Heine ◽  
Lea Merz ◽  
Sonja Kallendrusch ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4511
Author(s):  
Philipp J. Stenzel ◽  
Nina Hörner ◽  
Sebastian Foersch ◽  
Daniel-Christoph Wagner ◽  
Igor Tsaur ◽  
...  

Background: In the treatment of clear cell renal cell carcinoma (ccRCC), nivolumab is an established component of the first-line therapy with a favorable impact on progression free survival and overall survival. However, treatment-related adverse effects occur and, to date, there is no approved predictive biomarker for patient stratification. Thus, the aim of this study was to establish an ex vivo tissue slice culture model of ccRCC and to elucidate the impact of nivolumab on tumor infiltrating immune cells. Methods: Fresh tumor tissue of ccRCC was treated with the immune checkpoint inhibitor nivolumab using ex vivo tissue slice culture (TSC). After cultivation, tissue slices were formalin-fixed, immunohistochemically stained and analyzed via digital image analysis. Results: The TSC model was shown to be suitable for ex vivo pharmacological experiments on intratumoral immune cells in ccRCC. PD1 expression on tumor infiltrating immune cells was dose-dependently reduced after nivolumab treatment (p < 0.01), whereas density and proliferation of tumor infiltrating T-cells and cytotoxic T-cells were inter-individually altered with a remarkable variability. Tumor cell proliferation was not affected by nivolumab. Conclusions: This study could demonstrate nivolumab-dependent effects on PD1 expression and tumor infiltrating T-cells in TSC of ccRCC. This is in line with results from other scientific studies about changes in immune cell proliferation in peripheral blood in response to nivolumab. Thus, TSC of ccRCC could be a further step to personalized medicine in terms of testing the response of individual patients to nivolumab.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Steve Z. Martin ◽  
Daniel C. Wagner ◽  
Nina Hörner ◽  
David Horst ◽  
Hauke Lang ◽  
...  

Abstract Background The lack of predictive biomarkers or test systems contributes to high failure rates of systemic therapy in metastasized colorectal carcinoma, accounting for a still unfavorable prognosis. Here, we present an ex vivo functional assay to measure drug-response based on a tissue slice culture approach. Methods Tumor tissue slices of hepatic metastases of nine patients suffering from colorectal carcinoma were cultivated for 72 h and treated with different concentrations of the clinically relevant drugs Oxaliplatin, Cetuximab and Pembrolizumab. Easy to use, objective and automated analysis routines based on the Halo platform were developed to measure changes in proliferative activity and the morphometric make-up of the tumor. Apoptotic indices were assessed semiquantitatively. Results Untreated tumor tissue slices showed high morphological comparability with the original “in vivo”-tumor, preserving proliferation and stromal-tumor interactions. All but one patients showed a dosage dependent susceptibility to treatment with Oxaliplatin, whereas only two patients showed responses to Cetuximab and Pembrolizumab, respectively. Furthermore, we identified possible non-responders to Cetuximab therapy in absence of RAS-mutations. Conclusions This is the first time to demonstrate feasibility of the tissue slice culture approach for metastatic tissue of colorectal carcinoma. An automated readout of proliferation and tumor-morphometry allows for quantification of drug susceptibility. This strongly indicates a potential value of this technique as a patient-specific test-system of targeted therapy in metastatic colorectal cancer. Co-clinical trials are needed to customize for clinical application and to define adequate read-out cut-off values.


Spine ◽  
2006 ◽  
Vol 31 (25) ◽  
pp. 2918-2925 ◽  
Author(s):  
Daniel Haschtmann ◽  
Jivko V. Stoyanov ◽  
Ladina Ettinger ◽  
Lutz -P. Nolte ◽  
Stephen J. Ferguson

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rashmi Nanjundappa ◽  
Dong Kong ◽  
Kyuhwan Shim ◽  
Tim Stearns ◽  
Steven L Brody ◽  
...  

Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Naveen Kondru ◽  
Sireesha Manne ◽  
Robyn Kokemuller ◽  
Justin Greenlee ◽  
M. Heather West Greenlee ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Ran Xu ◽  
Wanda Teich ◽  
Florian Frenzel ◽  
Katrin Hoffmann ◽  
Josefine Radke ◽  
...  

ObjectiveThe utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods.MethodsTumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 μm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with λexc = 488 nm.ResultsOptical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of λmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at λmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band.ConclusionTumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an inner filter of the dye’s emission, particularly in the short wavelength region of the emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233152
Author(s):  
Nikolas Schopow ◽  
Sonja Kallendrusch ◽  
Siming Gong ◽  
Felicitas Rapp ◽  
Justus Körfer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document