scholarly journals Evaluation of biomass-based production of below zero emission reducing gas for the iron and steel industry

Author(s):  
Martin Hammerschmid ◽  
Stefan Müller ◽  
Josef Fuchs ◽  
Hermann Hofbauer

Abstract The present paper focuses on the production of a below zero emission reducing gas for use in raw iron production. The biomass-based concept of sorption-enhanced reforming combined with oxyfuel combustion constitutes an additional opportunity for selective separation of CO2. First experimental results from the test plant at TU Wien (100 kW) have been implemented. Based on these results, it could be demonstrated that the biomass-based product gas fulfills all requirements for the use in direct reduction plants and a concept for the commercial-scale use was developed. Additionally, the profitability of the below zero emission reducing gas concept within a techno-economic assessment is investigated. The results of the techno-economic assessment show that the production of biomass-based reducing gas can compete with the conventional natural gas route, if the required oxygen is delivered by an existing air separation unit and the utilization of the separated CO2 is possible. The production costs of the biomass-based reducing gas are in the range of natural gas-based reducing gas and twice as high as the production of fossil coke in a coke oven plant. The CO2 footprint of a direct reduction plant fed with biomass-based reducing gas is more than 80% lower compared with the conventional blast furnace route and could be even more if carbon capture and utilization is applied. Therefore, the biomass-based production of reducing gas could definitely make a reasonable contribution to a reduction of fossil CO2 emissions within the iron and steel sector in Austria.

2016 ◽  
Author(s):  
S. Tesch ◽  
T. Morosuk ◽  
G. Tsatsaronis

The increasing demand for primary energy leads to a growing market of natural gas and the associated market for liquefied natural gas (LNG) increases, too. The liquefaction of natural gas is an energy- and cost-intensive process. After exploration, natural gas, is pretreated and cooled to the liquefaction temperature of around −160°C. In this paper, a novel concept for the integration of the liquefaction of natural gas into an air separation process is introduced. The system is evaluated from the energetic and exergetic points of view. Additionally, an advanced exergy analysis is conducted. The analysis of the concepts shows the effect of important parameters regarding the maximum amount of liquefiable of natural gas and the total power consumption. Comparing the different cases, the amount of LNG production could be increased by two thirds, while the power consumption is doubled. The results of the exergy analysis show, that the introduction of the liquefaction of natural gas has a positive effect on the exergetic efficiency of a convetional air separation unit, which increases from 38% to 49%.


2020 ◽  
Vol 5 (3) ◽  
pp. 321-333
Author(s):  
V. V. Rao ◽  
Zulfan Adi Putra ◽  
M. R. Bilad ◽  
M. D. H. Wirzal ◽  
N. A. H. M. Nordin ◽  
...  

Natural gas is conventionally transported in its liquid form or Liquid Natural Gas (LNG). It is then transported using cryogenic insulated LNG tankers. At receiving terminals, LNG is regasified prior to distributing it through gas distribution system. Seawater has been used as the heat source, which leads to vast amount of cold energy discarded into the water. This work presents the use of LNG cold energy around Melaka Refining Company (MRC). The cold energy is utilized in power generation, propylene refrigeration cycle, and air separation plants. These systems are designed and simulated using a commercial process simulation software. Capital cost (CAPEX) function and revenues of each system are further developed as a function of LNG flowrates. These developed correlations are then used in an optimization problem to seek for the most profitable scenario. The results show that utilizing LNG for air separation unit yields the highest profit compared to power generation and refrigeration plants.


2019 ◽  
Vol 137 ◽  
pp. 01033
Author(s):  
Leszek Remiorz ◽  
Grzegorz Wiciak ◽  
Krzysztof Grzywnowicz

Primary element of an oxy-combustion plants is ambient air separation unit. This paper presents the results of experimental research concerning the parameters of the separation of N2/O2 from ambient air, using capillary polymer membranes, potentially applicable in oxy-combustion technology, under variable operational conditions. Collected data were utilized to approximate continuous functions describing the variability of essential parameters of the air separation based on such membranes. The functions were introduced to develop a complete mathematical model of the separation unit, intended to be applied in oxy-Moderate or Intense Low Oxygen Dilution (oxy-MILD) zero-emission plants. Computational analyses were performed for three variants of the unit’s configuration: serial connection of membrane modules, unit with retentate recirculation and unit with permeate recirculation. The results of the research, in the form of sets of characteristic curves, depicting parameters of the separation process as a function of the variable operational conditions, show that crucial differences to the subsequent separation parameters (permeate purity, real selectivity coefficient, recovery coefficient) and with regard to the power consumed, were obtained. The highest parameters of the module were gained for serial connection, whereas the lowest – for permeate recirculation. The lowest energy consumption was acquired for the retentate recirculation variant.


2019 ◽  
Vol 3 (4) ◽  
pp. 87
Author(s):  
Massimo Rivarolo ◽  
Gustavo Riveros-Godoy ◽  
Loredana Magistri ◽  
Aristide F. Massardo

This paper aims at investigating clean hydrogen production from the large size (14 GW) hydroelectric power plant of Itaipu, located on the border between Paraguay and Brazil, the two countries that own and manage the plant. The hydrogen, produced by a water electrolysis process, is converted into ammonia through the well-known Haber-Bosch process. Hydraulic energy is employed to produce H2 and N2, respectively, from a large-scale electrolysis system and an air separation unit. An economic feasibility analysis is performed considering the low electrical energy price in this specific scenario and that Paraguay has strong excess of renewable electrical energy but presents a low penetration of electricity. The proposal is an alternative to increase the use of electricity in the country. Different plant sizes were investigated and, for each of them, ammonia production costs were determined and considered as a term of comparison with traditional ammonia synthesis plants, where H2 is produced from methane steam reforming and then purified. The study was performed employing a software developed by the authors’ research group at the University of Genoa. Finally, an energetic, environmental, and economic comparison with the standard production method from methane is presented.


2013 ◽  
Vol 805-806 ◽  
pp. 654-659 ◽  
Author(s):  
Xin Jiang ◽  
Lin Wang ◽  
Feng Man Shen

Coke constitutes the major portion of ironmaking cost and its production causes the severe environmental concerns. So lower energy consumption, lower CO2 emission and waste recycling are driving the iron and steel industry to develop alternative, or coke-free, ironmaking process. Midrex and HYL Energiron are the leading technologies in shaft furnace direct reduction, and they account for about 76% of worldwide production. They are the most competitive ways to obtain high quality direct reduced iron (DRI) for steelmaking. Therefore, in the present paper, some detailed information about these two processes are given. Much attention has been paid on process scheme, the feedstock, DRI product, heat recovery, reforming gas, hot discharge and transportation, and by-product emission. Its very important for direct reduction development in both natural gas-rich counties and natural gas-poor counties.


Author(s):  
Carl-W. Hustad ◽  
Inge Trondstad ◽  
Roger E. Anderson ◽  
Keith L. Pronske ◽  
Fermin Viteri

In Aug 2004 the Zero Emission Norwegian Gas (ZENG) project team completed Phase-1: Concept and Feasibility Study for a 40 MW Pilot & Demonstration (P&D) Plant, that is proposed will be located at the Energy Park, Risavika, near Stavanger in South Norway during 2008. The power plant cycle is based upon implementation of the natural gas (NG) and oxygen fueled Gas Generator (GG) (1500°F/1500 psi) successfully demonstrated by Clean Energy Systems (CES) Inc. The GG operations was originally tested in Feb 2003 and is currently (Feb 2005) undergoing extensive commissioning at the CES 5MW Kimberlina Test Plant, near Bakersfield, California. The ZENG P&D Plant will be an important next step in an accelerating path towards demonstrating large-scale (+200 MW) commercial implementation of zero-emission power plants before the end of this decade. However, development work also entails having a detailed commercial understanding of the techno-economic potential for such power plant cycles: specifically in an environment where the future penalty for carbon dioxide (CO2) emissions remains uncertain. Work done in dialogue with suppliers during ZENG Project Phase-1 has cost-estimated all major plant components to a level commensurate with engineering pre-screening. The study has also identified several features of the proposed power plant that has enabled improvements in thermodynamic efficiency from 37% up to present level of 44–46% without compromising the criteria of implementation using “near-term” available technology. The work has investigated: i. Integration between the cryogenic air separation unit (ASU) and the power plant. ii. Use of gas turbine technology for the intermediate pressure (IP) steam turbine. iii. Optimal use of turbo-expanders and heat-exchangers to mitigate the power consumption incurred for oxygen production. iv. Improved condenser design for more efficient CO2 separation and removal. v. Sensitivity of process design criteria to “small” variations in modeling of the physical properties for CO2/steam working fluid near saturation. vi. Use of a second “conventional” pure steam Rankine bottoming cycle. In future analysis, not all these improvements need necessarily be seen to be cost-effective when taking into account total P&D program objectives; thermodynamic efficiency, power plant investment, operations and maintenance cost. However, they do represent important considerations towards “total” optimization when designing the P&D Plant. We observe that Project Phase-2: Pre-Engineering & Qualification should focus on optimization of plant size with respect to total capital investment (CAPEX); and identification of further opportunities for extended technology migration from gas turbine environment that could also permit raised turbine inlet temperatures (TIT).


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4835
Author(s):  
Sébastien Pissot ◽  
Henrik Thunman ◽  
Peter Samuelsson ◽  
Martin Seemann

A dual fluidized bed (DFB) gasification process is proposed to produce sustainable reducing gas for the direct reduction (DR) of iron ore. This novel steelmaking route is compared with the established process for DR, which is based on natural gas, and with the emerging DR technology using electrolysis-generated hydrogen as the reducing gas. The DFB-DR route is found to produce reducing gas that meets the requirement of the DR reactor, based on existing MIDREX plants, and which is produced with an energetic efficiency comparable with the natural gas route. The DFB-DR path is the only route considered that allows negative CO2 emissions, enabling a 145% decrease in emissions relative to the traditional blast furnace–basic oxygen furnace (BF–BOF) route. A reducing gas cost between 45–60 EUR/MWh is obtained, which makes it competitive with the hydrogen route, but not the natural gas route. The cost estimation for liquid steel production shows that, in Sweden, the DFB-DR route cannot compete with the natural gas and BF–BOF routes without a cost associated with carbon emissions and a revenue attributed to negative emissions. When the cost and revenue are set as equal, the DFB-DR route becomes the most competitive for a carbon price >60 EUR/tCO2.


Author(s):  
Arthur R. Smith ◽  
Joseph Klosek ◽  
James C. Sorensen ◽  
Donald W. Woodward

Alternative fuel projects often require substantial amounts of oxygen. World scale gas-to-liquids (GTL) processes based on the partial oxidation of natural gas, followed by Fischer-Tropsch chemistry and product upgrading, may require in excess of 10,000 tons per day of pressurized oxygen. The remote location of many of these proposed projects and the availability of low-cost natural gas and byproduct steam from the GTL process disadvantages the use of traditional, motor-driven air separation units in favor of steam or gas turbine drive facilities. Another process of current interest is the partial oxidation of waste materials in industrial areas to generate synthesis gas. Synthesis gas may be processed into fuels and chemicals, or combusted in gas turbines to produce electricity. A key to the economic viability of such oxygen-based processes is cost effective air separation units, and the manner in which they are integrated with the rest of the facility. Because the trade-off between capital and energy is different for the remote gas and the industrial locations, the optimum integration schemes can also differ significantly. This paper examines various methods of integrating unit operations to improve the economics of alternative fuel facilities. Integration concepts include heat recovery, as well as several uses of byproduct nitrogen to enhance gas turbine operation or power production. Start-up, control and operational aspects are presented to complete the review of integrated designs.


Sign in / Sign up

Export Citation Format

Share Document