scholarly journals High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs

2014 ◽  
Vol 71 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Zhou Hong ◽  
Anders Fries ◽  
Harry X. Wu
2002 ◽  
Vol 32 (6) ◽  
pp. 1025-1038 ◽  
Author(s):  
Ryan A Atwood ◽  
Timothy L White ◽  
Dudley A Huber

One hundred and thirteen open-pollinated families from Florida source loblolly pine (Pinus taeda L.) were tested in four states in the southeastern United States. Heritabilities and genetic correlations were estimated for volume, specific gravity, and latewood percentage at three different growth stages: juvenile (ages 0–10 years), mature (11–17 years), and total (0–17 years). Heritabilities of growth traits (0.09–0.11) were consistently lower than for wood property traits (0.16–0.33). Growth traits for Florida loblolly exhibited high genotype × environment interaction (rB = 0.44), whereas wood properties did not (rB = 0.90). The higher heritabilities and genetic stability across environments make wood properties amenable to genetic manipulation through breeding programs. In contrast, the high genotype × environment interaction of growth traits for Florida loblolly pine requires more research to understand the possible implication of these effects on breeding programs. Trait–trait and age–age genetic correlations were determined for growth and wood properties. Strong positive age–age correlations were present for latewood percentage, volume, and specific gravity. Weak negative trait–trait genetic correlations existed between specific gravity and volume across ages (–0.13 to –0.43). No genetic correlation existed between latewood percentage and volume, while a moderate favorable genetic correlation existed between latewood percentage and specific gravity (0.47 to 0.59). Genetic gains in volume and specific gravity were compared for various types of selection. In one type, forward selection of the top 20 individuals (of 3484) based on 17-year volume, resulted in a 20.5% genetic gain in volume; however, a concomitant loss of –6.4% also occurred in specific gravity. If a selection index was used to hold specific gravity constant, a gain in total volume of 14% was obtained.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 491 ◽  
Author(s):  
Irena Fundova ◽  
Tomas Funda ◽  
Harry X. Wu

Wood stiffness is an important wood mechanical property that predetermines the suitability of sawn timber for construction purposes. Negative genetic correlations between wood stiffness and growth traits have, however, been reported for many conifer species including Scots pine. It is, therefore, important that breeding programs consider wood stiffness and growth traits simultaneously. The study aims to (1) evaluate different approaches of calculating the dynamic modulus of elasticity (MOE, non-destructively assessed stiffness) using data from X-ray analysis (SilviScan) as a benchmark, (2) estimate genetic parameters, and (3) apply index selection. In total, we non-destructively measured 622 standing trees from 175 full-sib families for acoustic velocity (VEL) using Hitman and for wood density (DEN) using Resistograph and Pilodyn. We combined VEL with different wood densities, raw (DENRES) and adjusted (DENRES.TB) Resistograph density, Pilodyn density measured with (DENPIL) and without bark (DENPIL.B), constant of 1000 kg·m−3 (DENCONST), and SilviScan density (DENSILV), to calculate MOEs and compare them with the benchmark SilviScan MOE (MOESILV). We also derived Smith–Hazel indices for simultaneous improvement of stem diameter (DBH) and wood stiffness. The highest additive genetic and phenotypic correlations of the benchmark MOESILV with the alternative MOE measures (tested) were attained by MOEDENSILV (0.95 and 0.75, respectively) and were closely followed by MOEDENRES.TB (0.91 and 0.70, respectively) and MOEDENCONST and VEL (0.91 and 0.65, respectively for both). Correlations with MOEDENPIL, MOEDENPIL.B, and MOEDENRES were lower. Narrow-sense heritabilities were moderate, ranging from 0.39 (MOESILV) to 0.46 (MOEDENSILV). All indices revealed an opportunity for joint improvement of DBH and MOE. Conclusions: MOEDENRES.TB appears to be the most efficient approach for indirect selection for wood stiffness in Scots pine, although VEL alone and MOEDENCONST have provided very good results too. An index combining DBH and MOEDENRES.TB seems to offer the best compromise for simultaneous improvement of growth, fiber, and wood quality traits.


2014 ◽  
Vol 44 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Finto Antony ◽  
Laurence R. Schimleck ◽  
Lewis Jordan ◽  
Benjamin Hornsby ◽  
Joseph Dahlen ◽  
...  

The use of clonal varieties in forestry offers great potential to improve growth traits (quantity) and wood properties (quality) of loblolly pine (Pinus taeda L.). Loblolly pine trees established via somatic embryogenesis (clones), full-sib zygotic crosses, and half-sib zygotic open-pollinated families were sampled to identify variation in growth and wood properties among and within clonal lines and zygotic controls. Increment cores 5 mm in diameter were collected at age 4 from a total of 2615 trees. Growth properties (diameter at 1.4 m and total tree height) and wood properties (whole-core density, latewood and earlywood density, and latewood percent) were measured for each tree sampled in the study. Overall, growth properties were better for full-sib seedling than for clonal lines, whereas wood density was higher for clonal lines than full-sib and open-pollinated seedlings. However, there were clonal lines with better growth and higher wood density. Clonal repeatability of both growth and wood properties across sampled sites and genetic correlations between growth and wood traits were determined, with higher repeatability observed for wood traits compared with growth traits. Significant genetic correlations were observed for tree height and wood properties, whereas weak correlations were observed for diameter and wood properties.


2001 ◽  
Vol 31 (8) ◽  
pp. 1348-1356 ◽  
Author(s):  
Q Yu ◽  
P Pulkkinen ◽  
M Rautio ◽  
M Haapanen ◽  
R Alén ◽  
...  

To better understand the genetic control of wood chemical and fibre properties in hybrid aspen, genetic relationship of these with growth and phenological traits were examined. In all, 18 hybrid aspen clones were sampled in the 13- and 14-year-old clone trials in Sweden. Strong clone within family effects were present for growth and wood properties. The repeatability estimates across two sites were 0.85, 0.65, 0.56, 0.54, and 0.65 for alkali soluble lignin content, arithmetic average fibre length, coarseness, diameter, and height, respectively. Genetic correlations generally exceeded the corresponding phenotypic correlations. The phenotypic and genetic correlations were negative between fibre count and height growth (–0.64 and –0.65, respectively) and between fibre count and length of growth period. The result suggests that the length of the growth period could be a good predictor of clone differences in fibre count. The estimated correlations were unfavourable, in the sense that clonal selection directed at increasing the fibre count is expected to produce an indirect genetic decline in growth. Intersite genetic correlations indicated that wood characters were more stable than growth traits.


Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 681 ◽  
Author(s):  
Xiya Fang ◽  
Zhenyu Lai ◽  
Jie Liu ◽  
Chunlan Zhang ◽  
Shipeng Li ◽  
...  

Nuclear receptor subfamily 6, group A, member 1 (NR6A1), as an important member of the nuclear receptor family, plays an important role in regulating growth, metabolism, and differentiation of embryonic stem cells. For this reason, the NR6A1 gene is considered to be a promising candidate for economic traits and was found to be associated with body size traits in many livestock. However, no studies have been conducted on NR6A1 in donkeys so far. Thus, in this research, we focused on donkeys and identified a 13 bp deletion in intron-1 of the NR6A1 gene among 408 individuals from Guanzhong and Dezhou donkeys using polyacrylamide gel electrophoresis. Three genotypes were identified, namely II, ID, and DD. The association analysis indicated that the body lengths and body heights5f genotype II individuals were significantly different to those of genotype ID in Dezhou donkeys. Conclusively, the 13 bp deletion was associated with growth traits in both Guanzhong donkeys and Dezhou donkeys, indicating that the NR6A1 gene could be a possible candidate gene in marker-assisted selection for donkey breeding programs.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3971
Author(s):  
Gabriel Silva de Oliveira ◽  
José Marcato Junior ◽  
Caio Polidoro ◽  
Lucas Prado Osco ◽  
Henrique Siqueira ◽  
...  

Forage dry matter is the main source of nutrients in the diet of ruminant animals. Thus, this trait is evaluated in most forage breeding programs with the objective of increasing the yield. Novel solutions combining unmanned aerial vehicles (UAVs) and computer vision are crucial to increase the efficiency of forage breeding programs, to support high-throughput phenotyping (HTP), aiming to estimate parameters correlated to important traits. The main goal of this study was to propose a convolutional neural network (CNN) approach using UAV-RGB imagery to estimate dry matter yield traits in a guineagrass breeding program. For this, an experiment composed of 330 plots of full-sib families and checks conducted at Embrapa Beef Cattle, Brazil, was used. The image dataset was composed of images obtained with an RGB sensor embedded in a Phantom 4 PRO. The traits leaf dry matter yield (LDMY) and total dry matter yield (TDMY) were obtained by conventional agronomic methodology and considered as the ground-truth data. Different CNN architectures were analyzed, such as AlexNet, ResNeXt50, DarkNet53, and two networks proposed recently for related tasks named MaCNN and LF-CNN. Pretrained AlexNet and ResNeXt50 architectures were also studied. Ten-fold cross-validation was used for training and testing the model. Estimates of DMY traits by each CNN architecture were considered as new HTP traits to compare with real traits. Pearson correlation coefficient r between real and HTP traits ranged from 0.62 to 0.79 for LDMY and from 0.60 to 0.76 for TDMY; root square mean error (RSME) ranged from 286.24 to 366.93 kg·ha−1 for LDMY and from 413.07 to 506.56 kg·ha−1 for TDMY. All the CNNs generated heritable HTP traits, except LF-CNN for LDMY and AlexNet for TDMY. Genetic correlations between real and HTP traits were high but varied according to the CNN architecture. HTP trait from ResNeXt50 pretrained achieved the best results for indirect selection regardless of the dry matter trait. This demonstrates that CNNs with remote sensing data are highly promising for HTP for dry matter yield traits in forage breeding programs.


2019 ◽  
Vol 15 ◽  
pp. 01006
Author(s):  
K. Margaryan ◽  
E. Maul ◽  
Z. Muradyan ◽  
A. Hovhannisyan ◽  
G. Melyan ◽  
...  

Crop wild relatives provide a useful source of genetic variation and represent a large pool of genetic diversity for new allelic variation required in breeding programs. Armenia is an important center of origin both for cultivated Vitis vinifera ssp. sativa and wild Vitis vinifera ssp. sylvestris. Owing to recent prospection in Armenian woods and river floodplains many forms of wild grapevine were discovered and inventoried, which is an important prerequisite to unlock their breeding potential in the future. The fact that some genotypes of V. sylvestris can withstand the diseases is likely to be due to a more efficient basal immunity. The overall goal of the proposed research was to characterize the diversity of V. sylvestris from Armenia with respect to its capacity for stilbene biosynthesis, which might be exploited as genetic resource for resistance breeding. The realized research stimulates the recovery, characterization and preservation of wild grape germplasm, presently at risk of extinction. The recovery and characterization of wild genotypes will be the base of selection of genetic traits important in breeding programs for the generation of biotic and changing climate tolerant grapevine varieties and rootstocks, both necessary for the future of viticulture in Armenia and in Europe.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1515
Author(s):  
Marissa L. Parrott ◽  
Leanne V. Wicker ◽  
Amanda Lamont ◽  
Chris Banks ◽  
Michelle Lang ◽  
...  

Modern zoos are increasingly taking a leading role in emergency management and wildlife recovery. In the face of climate change and the predicted increase in frequency and magnitude of catastrophic events, zoos provide specialised expertise to assist wildlife welfare and endangered species recovery. In the 2019–2020 Australian bushfire season, now called Australia’s Black Summer, a state government-directed response was developed, assembling specialised individuals and organisations from government, non-government organisations, research institutions, and others. Here, we detail the role of Zoos Victoria staff in wildlife triage and welfare, threatened species evacuation and recovery, media and communications, and fundraising during and after the fires. We share strategies for future resilience, readiness, and the ability to mobilise quickly in catastrophic events. The development of triage protocols, emergency response kits, emergency enclosures, and expanded and new captive breeding programs is underway, as are programs for care of staff mental health and nature-based community healing for people directly affected by the fires. We hope this account of our response to one of the greatest recent threats to Australia’s biodiversity, and steps to prepare for the future will assist other zoos and wildlife organisations around the world in preparations to help wildlife before, during, and after catastrophic events.


2016 ◽  
Vol 56 (4) ◽  
pp. 690 ◽  
Author(s):  
D. J. Brown ◽  
A. A. Swan

Australian Merino breeders have traditionally selected animals for breeding predominately on the basis of wool characteristics. Over recent decades, an increasing proportion of Merino breeders are interested in producing a ewe that can be used for prime-lamb production, but that also performs well for wool characteristics. Correlations between ultrasound carcass traits and other traits such as wool, internal parasite resistance and reproduction traits, are not very well known. The aims of this study were three-fold: (1) to estimate the genetic relationships between ultrasound carcass traits and wool, internal parasite resistance and reproduction traits, (2) to determine the value of recording ultrasound carcass traits in Merino breeding programs, and (3) to evaluate the impact of improving ewe genetic merit for fatness on their reproduction performance. Ultrasound fat and eye muscle depth had small to moderate genetic correlations with most traits, with positive correlations observed for bodyweight, fibre diameter, fibre curvature and reproduction, and negative correlations observed for fleece weight, fibre diameter coefficient of variation, worm egg count and breech wrinkle. As expected on the basis of these genetic correlations, estimated breeding values for fat depth of ewes had a positive association with their observed reproduction performance, but the effect explained only minimal variation in reproductive performance, and was extremely variable among flocks and years. A range of measurement scenarios was investigated for three standard MERINOSELECT indexes. Measuring fat and eye muscle depth resulted in 3%, 4% and 21% additional economic index gain for the fine, medium and dual purpose indexes, respectively, whereas measuring reproduction traits directly resulted in 17%, 27% and 45% additional gain in the economic index. Dual purpose index gains benefited more from measuring ultrasound carcass traits as it is the only index with a direct economic value placed on carcass traits. Measuring fat and eye muscle depth also resulted in a greater reduction in worm egg count. The results indicated that desirable genetic progress can be made in wool, ultrasound carcass, internal parasite resistance and number of lambs born and weaned simultaneously using multiple trait selection to account for the mix of favourable and unfavourable correlations between these traits. These results also demonstrated that the best method to maximise economic gain is to measure as many traits (or closely correlated traits) in the breeding objective as possible.


2007 ◽  
Vol 37 (10) ◽  
pp. 1886-1893 ◽  
Author(s):  
Xiaobo Li ◽  
Dudley A. Huber ◽  
Gregory L. Powell ◽  
Timothy L. White ◽  
Gary F. Peter

The importance of integrating measures of juvenile corewood mechanical properties, modulus of elasticity in particular, with growth and disease resistance in tree improvement programs has increased. We investigated the utility of in-tree velocity stiffness measurements to estimate the genetic control of corewood stiffness and to select for trees with superior growth and stiffness in a progeny trial of 139 families of slash pine, Pinus elliottii Engelm. grown on six sites. Narrow-sense heritability estimates across all six sites for in-tree acoustic velocity stiffness at 8 years (0.42) were higher than observed for height (0.36) and diameter at breast height (DBH) (0.28) at 5 years. The overall type B genetic correlation across sites for velocity stiffness was 0.68, comparable to those found for DBH and volume growth, indicating that family rankings were moderately repeatable across all sites for these traits. No significant genetic correlations were observed between velocity stiffness, DBH, and volume growth. In contrast, a significant, but small, favorable genetic correlation was found between height and velocity stiffness. Twenty percent of the families had positive breeding values for both velocity stiffness and growth. The low cost, high heritability and nearly independent segregation of the genes involved with in-tree velocity stiffness and growth traits indicate that acoustic methods can be integrated into tree improvement programs to breed for improved corewood stiffness along with growth in slash pine.


Sign in / Sign up

Export Citation Format

Share Document