scholarly journals Effects of annealing treatment on tribological behavior of tungsten-doped diamond-like carbon film under lubrication (Part 2): Tribological behavior under MoDTC lubrication

Friction ◽  
2021 ◽  
Author(s):  
Shaojun Zhang ◽  
Lina Zhu ◽  
Yanyan Wang ◽  
Jiajie Kang ◽  
Haidou Wang ◽  
...  

AbstractMolybdenum dialkyldithiocarbamate (MoDTC) is widely used as a friction modifier in engine lubricating oil. Under MoDTC lubrication, the friction and wear behaviors of tungsten-doped diamond-like carbon (W-DLC) films annealed at 100–400 °C were discussed and evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. Under (polymerized alpha olefin) PAO + MoDTC lubrication, the coefficient of friction of all samples decreased, but the wear rates of the W-DLC films annealed at 300 °C increased significantly. By interacting with zinc dialkyldithiophosphate (ZDDP), the wear rates of W-DLC films annealed at different temperatures declined significantly owing to the formation of dense phosphate tribofilms on the worn surfaces.

2016 ◽  
Vol 95 ◽  
pp. 456-461 ◽  
Author(s):  
T.F. Zhang ◽  
F. Jiang ◽  
T.T. Liao ◽  
Q.Y. Deng ◽  
S.S. Li ◽  
...  

2015 ◽  
Vol 642 ◽  
pp. 179-183
Author(s):  
K.A.H. Al Mahmud ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
H.M. Mobarak

Currently diamond like carbon (DLC) coatings application for automotive components is becoming a favorable strategy to cope with new challenges faced by automotive industries. DLC coating is very effective to lower the coefficient of friction and wear rate, which in turn could improve fuel efficiency and durability of the engine components. Commercially available fully formulated lubricating oils are specially produced to enhance the lubrication of ferrous materials. Therefore, nonferrous coating (DLC) interaction with commercial lubricating oil needs to be investigated. In this current investigation, coefficient of friction and wear rate were investigated by ball on plate tribo testing machine at different temperatures in the presence of SAE 40 lubricating oil. At high test temperature coefficient of friction decreases, however wear rate increases for the a-C:H coated plate, however, steel/steel contact shows opposite trend of coefficient of friction and wear rate change.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
A. Varela ◽  
A. García ◽  
J. L. Mier ◽  
F. Barbadillo ◽  
C. Camba

This paper compares the abrasive wear behaviour of two nickel alloys (Hastelloy and Refractalloy). Wear was calculated by weight loss using pin-on-disk tests that were carried out at certain values of load, speed, and temperature range. The study is completed with metallographic observations at different temperatures of the wear tracks before and after the tests. Also, the variation of the coefficient of friction with temperature is calculated in the two alloys studied.


Author(s):  
M. A. Oomen ◽  
R. Bosman ◽  
P.M. Lugt

Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different compositions of carrier and particles, to characterize their friction and wear behavior. It is shown experimentally that the influence of the carrier cannot be neglected just after application and very low (0.01-0.05) frictional values are observed in a fully flooded situation. However, starvation occurs quickly and friction values will become relatively stable at an intermediate level around μ=0.2 until the friction modifier is consumed and a new dose is required. After the carrier is pushed out of the running track the particles in the contact dominate the tribological performance. The level of friction is a function of total rolling distance, effective sliding length and sum velocity. The most dominant factor depends on the friction modifier and the working mechanism for friction stabilization. It is also shown that the wear rates during tests do not depend significantly on slip, which makes it possible to predict wear behavior. Wear rates are dependent on the type of friction modifier used.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Alexander Mironov ◽  
Iosif Gershman ◽  
Eugeniy Gershman ◽  
Pavel Podrabinnik ◽  
Ekaterina Kuznetsova ◽  
...  

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.


Sign in / Sign up

Export Citation Format

Share Document