A state-of-the-art review on the experimental investigations of bendable concrete

Author(s):  
DivyarajSinh Solanki ◽  
Muhammed Zain Kangda ◽  
Shubham Sarur ◽  
Ehsan Noroozinejad Farsangi
2021 ◽  
Vol 5 (11) ◽  
pp. 290
Author(s):  
Panagiotis Kapsalis ◽  
Tine Tysmans ◽  
Danny Van Hemelrijck ◽  
Thanasis Triantafillou

Textile-reinforced concrete (TRC) is a promising composite material with enormous potential in structural applications because it offers the possibility to construct slender, lightweight, and robust elements. However, despite the good heat resistance of the inorganic matrices and the well-established knowledge on the high-temperature performance of the commonly used fibrous reinforcements, their application in TRC elements with very small thicknesses makes their effectiveness against thermal loads questionable. This paper presents a state-of-the-art review on the thermomechanical behavior of TRC, focusing on its mechanical performance both during and after exposure to high temperatures. The available knowledge from experimental investigations where TRC has been tested in thermomechanical conditions as a standalone material is compiled, and the results are compared. This comparative study identifies the key parameters that determine the mechanical response of TRC to increased temperatures, being the surface treatment of the textiles and the combination of thermal and mechanical loads. It is concluded that the uncoated carbon fibers are the most promising solution for a fire-safe TRC application. However, the knowledge gaps are still large, mainly due to the inconsistency of the testing methods and the stochastic behavior of phenomena related to heat treatment (such as spalling).


2020 ◽  
Vol 6 (14) ◽  
pp. eaay4058 ◽  
Author(s):  
Stephen H. Yuwono ◽  
Ilias Magoulas ◽  
Piotr Piecuch

The high-lying vibrational states of the magnesium dimer (Mg2), which has been recognized as an important system in studies of ultracold and collisional phenomena, have eluded experimental characterization for half a century. Until now, only the first 14 vibrational states of Mg2 have been experimentally resolved, although it has been suggested that the ground-state potential may support five additional levels. Here, we present highly accurate ab initio potential energy curves based on state-of-the-art coupled-cluster and full configuration interaction computations for the ground and excited electronic states involved in the experimental investigations of Mg2. Our ground-state potential unambiguously confirms the existence of 19 vibrational levels, with ~1 cm−1 root mean square deviation between the calculated rovibrational term values and the available experimental and experimentally derived data. Our computations reproduce the latest laser-induced fluorescence spectrum and provide guidance for the experimental detection of the previously unresolved vibrational levels.


1981 ◽  
pp. 77
Author(s):  
Vitelmo Bertero

This is a paper that summarizes the state of the practice and state of the art in the prediction of seismic behavior of cylindrical liquid storage tanks. It can be divided into five parts. In the first part the seismic performance of these types of tanks during recent   earthquakes is brielfly reviewed. From this review it becomes evident that a large percentage of these tanks have failed or suffered severe damages. The different types of failure are classified into several categories. The second part of the paper discusses the desing of some of the thank that suffered damages andthe state of the practice is summarized by reviewing present seismic code desing provisions. Thirdly, the soundness of these code provisions is analyzed in view of the state of thank.  Results obtained in recent theoretical and experimental investigations of such behavior are summarized and implications regarding needed improvement in seismic desing are assessed. Results from analyses of an existing  thank using different methods are presented and compared. An improved procedure for the practical seismic resistant desing of these thanks is outlined in the fourth part of the paper. A series of practical desing rules which provide extra margins of safety are offered and the extra cost required is discussed. Finally, recommendations for future research to improve the desing and construction of this type of liquid storage thanks are formuated.


Author(s):  
Armin Roth ◽  
Matthias Herbst ◽  
Jürgen Rudolph ◽  
Paul Wilhelm ◽  
Xaver Schuler ◽  
...  

The fatigue assessment of safety relevant components is of importance for ageing management with regard to safety and reliability. For cyclic stress evaluation, different country specific design codes and standards provide fatigue analysis procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as limiting criteria, the influence of different factors like e.g. environment, surface, temperature and data scatter must be taken into consideration in an appropriate way. In this context there is a need of consolidating and increasing the current knowledge. In the framework of an ongoing three years German cooperative project performed by Materials Testing Institute MPA Stuttgart and AREVA GmbH (Erlangen) it is the aim to both improve the state of the art based on an experimental program on the factors mentioned above including hold-times at transient free static load and on the derivation of a practicable engineering fatigue assessment concept. Emanating from a review of the current state of the art the cooperative project is split up into three major parts: 1) Experimental investigations concerning the influence of loading parameters and environmentally assisted fatigue (EAF) effects (light water reactor environment) on the fatigue strength of ferritic steels including weldments. 2) Experimental investigations concerning the influence of long hold times and the EAF effects on the fatigue strength of austenitic and ferritic steels. 3) The results of the outlined experimental program and published results will constitute the input for the proposal of an engineering fatigue assessment concept. This concept includes the differentiation between numerous factors of influence as an essential feature. In this context the margins between mean data curves and design curves are to be discussed in detail considering the factors of influence in general and EAF in particular. Based on a comprehensive consolidation of the state of the art and previous investigations in air and in light water reactor environment an experimental program is set up with the following key aspects: - Strain controlled fatigue tests on welded (microstructure of the weldment excluding microscopic and macroscopic weld notch effects) and unwelded smooth laboratory specimens subjected to constant and variable strain amplitude loading in air and light water reactor environment. - Strain controlled fatigue tests on notched specimens for the consideration of multi-axiality effects in air and light water reactor environment. - Strain controlled fatigue tests on smooth round laboratory specimens in air and in light water reactor environment focusing on long (power plant relevant) hold time effects.


Author(s):  
Dmitri V. Alexandrov ◽  
Andrey Yu. Zubarev

This theme issue, in two parts, continues research studies of transport phenomena in complex media published in the first part (Alexandrov & Zubarev 2021 Phil. Trans. R. Soc. A 379 , 20200301. ( doi:10.1098/rsta.2020.0301 )). The issue is concerned with theoretical, numerical and experimental investigations of nonlinear transport phenomena in heterogeneous and metastable materials of different nature, including biological systems. The papers are devoted to the new effects arising in such systems (e.g. pattern and microstructure formation in materials, impacts of external processes on their properties and evolution and so on). State-of-the-art methods of numerical simulations, stochastic analysis, nonlinear physics and experimental studies are presented in the collection of issue papers. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2014 ◽  
Vol 35 (4) ◽  
pp. 3-27 ◽  
Author(s):  
Dariusz Butrymowicz ◽  
Jarosław Karwacki ◽  
Marian Trela

Abstract Short state-of-the-art on the enhancement of condensation heat transfer techniques by means of condensate drainage is presented in this paper. The electrohydrodynamic (EHD) technique is suitable for dielectric media used in refrigeration, organic Rankine cycles and heat pump devices. The electric field is commonly generated in the case of horizontal tubes by means of a rod-type electrode or mesh electrodes. Authors proposed two geometries in the presented own experimental investigations. The first one was an electrode placed just beneath the tube bottom and the second one consisted of a horizontal finned tube with a double electrode placed beneath the tube. The experimental investigations of these two configurations for condensation of refrigerant R-123 have been accomplished. The obtained results confirmed that the application of the EHD technique for the investigated tube and electrode arrangement caused significant increase in heat transfer coefficient. The condensation enhancement depends both on the geometry of the electrode system and on the applied voltage.


2013 ◽  
Vol 07 (03) ◽  
pp. 1350019 ◽  
Author(s):  
HONG HAO ◽  
KAIMING BI ◽  
NAWAWI CHOUW ◽  
WEI-XIN REN

Seismic induced pounding damage to bridge structures was repeatedly observed in many previous major earthquakes. To avoid this adverse effect, extensive research efforts have been made by many researchers. This paper presents a state-of-the-art review in this field. It includes a brief review of the numerical modeling of bridge structures and impact models, numerical simulation of pounding responses between different components of bridge structures, experimental investigations, and pounding mitigation methods.


2019 ◽  
Vol 23 (1) ◽  
pp. 17-22
Author(s):  
Tomasz Pałczyński ◽  
K. Kantyka

Abstract This article presents the current state of the art regarding the use resonators in straight pipes. There is considerable need to control and reduce pressure pulsation in pipelines supplied with pulsating flows. The use of a Helmholz resonator introduces an additional degree of freedom to the analysed dynamic system. Building on previous experimental investigations by the authors, which identified the nonlinear properties of straight pipes supplied with pulsating flows, this study describes an experimental test rig, measurement methods and mechanical analogies for one (1DOF) and two (2DOF) degrees of freedom. The results are presented in the form of a 3D map of amplitude-frequency characteristics, as a function of the resonator volume determined by piston height. The dynamic properties of the described system are presented as amplitude-phase characteristics, based on a comparison of the numerical and experimental results.


2021 ◽  
Vol 22 ◽  
pp. 21-28
Author(s):  
Zaid Ali Abdulhussein ◽  
Katalin Kopecskó

The supplementary cementitious materials (SCMs) have recognized many of the beneficial influences on concrete ability to resist the penetration of chloride ions, such as fly ash, slag, silica fume, metakaolin, and other natural pozzolans; this benefit has primarily been ascribed to the refined pore structure that results from the appropriate use of SCMs, which, in turn, results in reduced permeability and ionic diffusivity. The paper illustrates the state-of-the-art research findings on; (1) the classification of the SCMs and physicochemical properties; (2) the influences of SCMs on cement binder and the pore structure under chloride ion permeability; (3) the influences of the SCMs on the carbonation process of the cement binder that aims to determine the optimum relationship between SCMs and concrete transport properties. The interesting experimental investigations of the combined influence of chloride and carbonate permeation in cement binder that implement the latest methods in different curing conditions, types, and level contents of the SCMs will yield new scientific results and proposals for the industrial applications auxiliary materials.


Sign in / Sign up

Export Citation Format

Share Document