scholarly journals Maximum dry density of sand–kaolin mixtures predicted by using fine content and specific gravity

2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Badee Alshameri
2020 ◽  
Vol 857 ◽  
pp. 259-265
Author(s):  
Jasim M. Abbas ◽  
Amer M Ibrahim ◽  
Abdalla M. Shihab

The civil engineering projects that includes soft clay within its activities has a serious concern of hazards, such hazards can be overcame by treating the existing soils by certain materials which are named as "stabilizers". The common materials that are highly used in this field are ordinary Portland cement, fly ash, lime and rice husk ash, etc. Each one of these stabilizers has its known shortcomings. The alkali activation of any alumina silicate source produces some kind of cost effective primary binding gel which is known as "Geopolymers". This study is devoted to investigate the role of liquid over fly ash ratio to some soil – FA based Geopolymers geotechnical properties. Such ratio is taken as 2.71, 3.167, 3.8 and 4.75 respectively within the experimental program and the investigated geotechnical properties are the specific gravity, liquid and plastic limit, compaction characteristics and California bearing ratio. The tests results showed that the maximum dry density decreased about 42 % at 2.71 liq/FA whereas this the specific gravity decreased 27 % at the same this ratio. In addition, the 3.8 and 4.75 of such limits revealed no plastic behavior due to the high presence of liquid.


2021 ◽  
Vol 40 (1) ◽  
pp. 28-38
Author(s):  
Pascal Ambrose ◽  
Siya Rimoy

California Bearing Ratio (CBR) laboratory testing is the conventional method for determining soaked strengths of pavement subgrades. The test requires careful preparation of soil samples followed by four days of water soaking before penetrating the samples using a standard plunger at prescribed rates to set depths. When the number of samples becomes large the determination of soaked CBR values becomes cumbersome as the test is laborious and time consuming. This study aimed at establishing an alternative way of determining soaked CBR by developing a model that would be used for estimating soaked CBR of fine- and coarse- grained soils without performing the CBR test. This has been achieved by correlating CBR values compacted at 95% Maximum Dry Density (MDD) with the soil index properties. The results show that soaked CBR values of fine-grained soils significantly correlate with specific gravity of soil (GS), Plasticity index (PI) and the grading modulus (GM) of the soil that yields a degree of determination of R2 = 0.91 and for coarse grained (A-2 type) soil, the soaked CBR values significantly correlate with specific gravity of soil and percentage of fines passing 0.075mm sieve size that yields a degree of determination of R2= 0.94.


2020 ◽  
Vol 6 ◽  
pp. 24-32
Author(s):  
Muhammad Israil ◽  
Muhammad Ashraf ◽  
Muhammad Fahim ◽  
Rashid Rehan ◽  
Sajjad Wali Khan ◽  
...  

This study presents experimental investigation of indigenous clays mixed with Bentonite to assess their suitability in potential use as clay liners. Soil samples with 0, 4, 8, and 12% Bentonite content from three different sites in Peshawar region were tested for various geotechnical properties. Grain size distribution, specific gravity, Atterberg limits and free swell were found through laboratory tests using appropriate ASTM procedures. Maximum dry density and optimum moisture content were calculated using Atterberg limits in available relationships. Finally, one dimensional consolidation tests were conducted to find relevant parameters for calculating hydraulic conductivity. A decrease in specific gravity, increase in free swell, and in optimum moisture content, decline in maximum dry density and hydraulic conductivity was observed with increase in Bentonite content across all three soil samples. During free swell, the soil clusters become larger leading to formation of floccules resulting in the narrowing of inter-particle space and thus blocking of permeable paths. It is concluded that 8% Bentonite content by weight yields a suitable mixture for a clay liner that has hydraulic conductivity in the range of recommended limits.


Author(s):  
Jitendra Khatti ◽  
◽  
Kamaldeep Singh Grover ◽  

The Gaussian Process Regression (GPR), Decision Tree (DT), Relevance Vector Machine (RVM), and Artificial Neural Network (ANN) AI approaches are constructed in MATLAB R2020a with different hyperparameters namely, kernel function, leaf size, backpropagation algorithms, number of neurons and hidden layers to compute the permeability of soil. The present study is carried out using 158 datasets of soil. The soil dataset consists of fine content (FC), sand content (SC), liquid limit (LL), specific gravity (SG), plasticity index (PI), maximum dry density (MDD) and optimum moisture content (OMC), permeability (K). Excluding the permeability of soil, rest of properties of soil is used as input parameters of the AI models. The best architectural and optimum performance models are identified by comparing the performance of the models. Based on the performance of the AI models, the NISEK_K_GPR, 10LF_K_DT, Poly_K_RVM, and GDANN_K_10H5 models have been identified as the best architectural AI models. The comparison of performance of the best architectural models, it is observed that the NISEK_K_GPR model outperformed the other best architectural AI models. In this study, it is also observed that GPR model is outperformed ANN models because of small dataset. The performance of NISEK_K_GPR model is compared with models available in literature and it is concluded that the GPR model has better performance and least prediction error than models available in literature study.


2018 ◽  
Vol 34 ◽  
pp. 01018
Author(s):  
C.G. Robert ◽  
A. Ayob ◽  
M.F. Muhammad Zaki ◽  
M.E. Razali ◽  
E.V. Lew ◽  
...  

Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.


2013 ◽  
Vol 701 ◽  
pp. 310-313 ◽  
Author(s):  
Faizal Bin Pakir ◽  
Ahmad Tarmizi Bin Abdul Karim ◽  
Felix N.L. Ling ◽  
Khairul Anuar Kassim

Organic soil is always known as problematic soil because of its engineering properties are inferior from other soft soils and/or because its behaviour may deviate from traditional rules of soil behaviour which makes it difficult to predict and design. Considerable research has been carried out over the years on organic soils, particularly peat soil which consists of various components of organic matter but the effect of particular organic matter is less reported. Hence, this study is carried out to determine the effect of humic acid (a kind of humified organic matter) on kaolin (which is widely studied). This paper addresses the influence of humic acid (30% and 50% of dry mass) on kaolins geochemistry properties namely Atterberg limits, compaction, specific gravity and Loss on Ignition (LOI). The findings of the study showed that the contents of humic acid had altered the behaviour of kaolin. The loss on ignition increased linearly with the increment of humic acid. However, the specific gravity, maximum dry density and Atterberg limits decreased with addition of humic acid. Atterberg limits decreased as the humic acid increased is believed to be due to the nature of humic acid which precipitated under acidic environment.


2018 ◽  
Vol 1 (March 2018) ◽  
Author(s):  
S.I Adedokun ◽  
J.R Oluremi ◽  
N.T Adekilekun ◽  
O.V Adeola

This paper investigated the effect of cement kiln dust (CKD) on the geotechnical properties of clay. Soil sample was collected from clay deposit at Ede North Local Government Area, Osun State, which lies within the geographical coordinates of 7N and 4E, was treated with up to 10% CKD. Sieve analysis, specific gravity, consistency limits, compaction (British Standard Light, BSL and West African Standard, WAS) and California Bearing Ratio (CBR) tests were carried out on both treated and untreated soil samples. Results showed that Ede clay is an A-7- 6 soil. Specific gravity increased from 2.61 to 2.91 with increase in CKD from 0 to 10%, maximum dry density (MDD) of the natural soil sample increased from 1.72 and 1.76 g/m’ to 1.84 and 1.85 g/m’ at 8% CKD for BSL and WAS, respectively. The unsoaked CBR of the specimen increased from 17 to 35% for 0-10% addition of CKD, and a similar trend was observed for the 24 hours soaked CBR values. This study indicated that CKD, though regarded as waste material, can be used to improve the geotechnical properties of Ede clay.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Badee Alshameri

The compaction is a mechanism to densify the loose soils. The maximum soil densification can be achieved by optimization of the desirable optimum moisture content (OMC) and maximum dry density (MDD). The maximum dry density and the optimum moisture content were affected by several parameters. The coarse content (CC) is one of these parameters. This paper studied the effect of the coarse content on the compaction parameters (MDD, OMC). Several sand-kaolin mixtures had coarse content ranged from 30 % to 80 % and moisture content ranged from 12% to 20% were used to inspect the relationship between CC, specific gravity (Gs), MDD, OMC, and bulk density. The results presented five empirical correlations with coefficient of determination (R2 ≥ 0.98) between CC, Gs, MDD, OMC and bulk density. The comparison between the current study and previous researchers indicated that both soil type and moisture content have significant effect on the efficiency of the empirical correlation equations between the maximum dry density, specific gravity, and coarse content. The results indicated a linear relationship between coarse content toward maximum dry density and specific gravity where both MDD and Gs increased with an increase CC. In contrary, the results showed non-linear relationship between optimum moisture content and coarse content where OMC decrease with an increase CC.


Author(s):  
A. Bharath ◽  
M. Manjunatha ◽  
Tangadagi Ranjitha B. ◽  
T.V. Reshma ◽  
S. Preethi

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ubido Oyem Emmanuel ◽  
Igwe Ogbonnaya ◽  
Ukah Bernadette Uche

AbstractInvestigation into the cause of road failure has been carried out along a 60 km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12 to 61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1–52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2–35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17–43.9%, maximum dry density ranges from 1.51–1.74 g /cm3, specific gravity ranges from 2.52–2.64 and CBR between 3 and 12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20–138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20 m – 240 m along the profile to a depth of 7.60 m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m − 120 m along the profile to a depth of 15 m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


Sign in / Sign up

Export Citation Format

Share Document