scholarly journals Scaling of an Aviation Hydrogen Micromix Injector Design for Industrial GT Combustion Applications

Author(s):  
Johannes Berger

AbstractDecarbonising the energy grid through renewable energy requires a grid firming technology to harmonize supply and demand. Hydrogen-fired gas turbine power plants offer a closed loop by burning green hydrogen produced with excess power from renewable energy. Conventional dry low NOx (DLN) combustors have been optimized for strict emission limits. A higher flame temperature of hydrogen drives higher NOx emissions and faster flame speed alters the combustion behavior significantly. Micromix combustion offers potential for low NOx emissions and optimized conditions for hydrogen combustion. Many small channels, so-called airgates, accelerate the airflow followed by a jet-in-crossflow injection of hydrogen. This leads to short-diffusion flames following the principle of maximized mixing intensity and minimized mixing scales. This paper shows the challenges and the potential of an economical micromix application for an aero-derivative industrial gas turbine with a high-pressure ratio. A technology transfer based on the micromix combustion research in the ENABLEH2 project is carried out. The driving parameter for ground use adaption is an increased fuel orifice diameter from 0.3 mm to 1.0 mm to reduce cost and complexity. Increasing the fuel supply mass flow leads to larger flames and higher emissions. The impact was studied through RANS simulation and trends for key design parameters were shown. Increased velocity in the airgates leads to a higher pressure drop and reduced emissions through faster mixing. Altering the penetration depth shows potential for emission reduction without compromising on pressure loss. Two improved designs are found, and their performance is discussed.

2005 ◽  
Vol 2 (4) ◽  
pp. 268-273 ◽  
Author(s):  
Rainer Kurz

A thermodynamic model for a gas turbine-fuel cell hybrid is created and described in the paper. The effects of gas turbine design parameters such as compressor pressure ratio, compressor efficiency, turbine efficiency, and mass flow are considered. The model allows to simulate the effects of fuel cell design parameters such as operating temperature, pressure, fuel utilization, and current density on the cycle efficiency. This paper discusses, based on a parametric study, optimum design parameters for a hybrid gas turbine. Because it is desirable to use existing gas turbine designs for the hybrids, the requirements for this hybridization are considered. Based on performance data for a typical 1600hp industrial single shaft gas turbine, a model to predict the off-design performance is developed. In the paper, two complementary studies are performed: The first study attempts to determine the range of cycle parameters that will lead to a reasonable cycle efficiency. Next, an existing gas turbine, that fits into the previously established range of parameters, will be studied in more detail. Conclusions from this paper include the feasibility of using existing gas turbine designs for the proposed cycle.


Author(s):  
Cyrus B. Meher-Homji ◽  
Mustapha Chaker ◽  
Andrew F. Bromley

Increased fuel costs have created a strong incentive for gas turbine operators to understand, minimize and control performance deterioration. The most prevalent deterioration problem faced by gas turbine operators is compressor fouling. Fouling causes a drop in airflow, pressure ratio and compressor efficiency, resulting in a “re-matching” of the gas turbine and compressor and a drop in power output and thermal efficiency. This paper addresses the causes and effects of fouling and provides a comprehensive treatment of the impact of salient gas turbine design parameters on the susceptibility and sensitivity to compressor fouling. Simulation analysis of ninety two (92) gas turbines of ranging from a few kW to large engines rated at greater than 300 MW has been conducted. It is hoped that this paper will provide practical information to gas turbine operators.


Author(s):  
A. H. Lefebvre

The attainment of very low pollutant emissions, in particular oxides of nitrogen (NOx), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultra-low NOx has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultra-low emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas turbine generated pollutants and their mechanisms of formation are described, along with related environmental risks and various issues concerning emissions regulations and recently-enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impact of these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basic approaches to the design of “dry” low NOx and ultra-low NOx combustors are reviewed. At the present time lean, premix, prevaporize, combustion appears to be the only technology available for achieving ultra-low NOx emissions from practical combustors. This concept is discussed in some detail, along with its inherent problems of autoignition, flashback, and acoustic resonance. Attention is also given to alternative methods of achieving ultra-low NOx emissions, notably the rich-bum, quick-quench, lean-burn and catalytic combustors. These concepts are now being actively developed, despite the formidable problems they present in terms of mixing and durability. The final section reviews the various correlations which are now being used to predict the exhaust gas concentrations of the main gaseous pollutant emissions from gas turbine engines. Comprehensive numerical methods have not yet completely displaced these semi-empirical correlations but are nevertheless providing useful insight into the interactions of swirling and recirculating flows with fuel sprays, as well as guidance to the combustion engineer during the design and development stages. Throughout the paper emphasis is placed on the important and sometimes pivotal role played by the fuel preparation process in the reduction of pollutant emissions from gas turbines.


Author(s):  
Bassam S. Mohammad ◽  
Preetham Balasubramanyam ◽  
Keith McManus ◽  
Jeffrey Ruszczyk ◽  
Ahmed M. Elkady ◽  
...  

Combustion dynamics have detrimental effects on hardware durability as well as combustor performance and emissions. This paper presents a detailed study on the impact of combustion dynamics on NOx and CO emissions generated from a prototype gas turbine combustor operating at a pressure of 180 psia (12.2 bars) with a pre-heat temperature of 720 F (655.3 K) (E-class machine operating conditions). Two unstable modes are discussed. The first is an intermittent mode, at 750 Hz, that emerges at flame temperatures near 2900°F (1866.5 K), resulting in high NOx and CO emissions. With increasing fuel flow, NOx and CO emissions continue to increase until the flame temperature reaches approximately 3250°F (2061 K), at which point the second acoustic mode begins to dominate. Flame images indicate that the intermittent mode is associated with flame motion which induces the high NOx and CO emissions. The second mode is also a 750 Hz, but of constant amplitude (no intermittency). Operation in this second 750 Hz mode results in significantly reduced NOx and CO emissions. At pressures higher than 180 psia (12.2 bars), the intermittent mode intensifies, leading to flashback at flame temperatures above 2850°F (1839 K). In order to mitigate the intermittent mode, a second configuration of the combustor included an exit area restriction. The exit area restriction eliminated the intermittent mode, resulting in stable operation and low emissions over a temperature range of 2700–3200°F (1755–2033 K). A comparison of the NOx emissions, as function of flame temperature, with previous published data for perfectly premixed indicates that, while the low amplitude 750 Hz oscillations have little effect, the intermittent mode significantly increases emissions. Mode shape analysis shows that the 750 Hz instability corresponds to the 1/4 wave axial mode. In the current research a ceramic liner is used while the previous published data was collected with a quartz liner. Typically, quartz is avoided due to reductions in effective flame temperature by radiation losses. Experiments showed that NOx emissions were not affected by the combustor liner type. This agreement between the quartz and ceramic liners data indicates limited effect from the radiation heat losses on NOx emissions.


Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multi-objective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.


2021 ◽  
Vol 12 (3) ◽  
pp. 631
Author(s):  
Sergey BESPALYY

The growth of renewable energy sources (RES) shows the desire of the government of Kazakhstan to meet challenges that affect the welfare and development of the state. National targets, government programs, policies influence renewable energy strategies. In the future, renewable energy technologies will act as sources of a green economy and sustainable economic growth. The state policy in the field of energy in Kazakhstan is aimed at improving the conditions for the development and support of renewable energy sources, amendments are being made to provide for the holding of auctions for new RES projects, which replaces the previously existing system of fixed tariffs. It is expected that the costs of traditional power plants for the purchase of renewable energy will skyrocket, provided that the goals in the field of renewable generation are achieved. This article provides an assessment of international experience in supporting renewable energy sources, as well as analyzes the current situation in the development of renewable energy in Kazakhstan and the impact on sustainable development and popularization of the «green» economy. The study shows that by supporting the development of renewable energy sources, economic growth is possible, which is achieved in an environmentally sustainable way.


2021 ◽  
Author(s):  
A. Ciani ◽  
L. Tay-Wo-Chong ◽  
A. Amato ◽  
E. Bertolotto ◽  
G. Spataro

Abstract Fuel flexibility in gas turbine development has become increasingly important and modern engines need to cope with a broad variety of fuels. The target to operate power plants with hydrogen-based fuels and low emissions will be of paramount importance in a future focusing on electric power decarbonization. Ansaldo Energia AE94.3A engine acquired broad experience with operation of various natural gas and hydrogen fuel blends, starting in 2006 in the Brindisi (Italy) power plant. Based on the exhaustive experience acquired in the field, this paper describes the latest advancements characterizing the operation of the AE94.3A burner with high pressure combustion tests adding hydrogen blends ranging from 0 to 40% in volume. The interpretation of the test results is supported by reactive and non-reactive simulations describing the effects of varying fuel reactivity on the flame structure as well as the impact of fuel / air momentum flux ratio on the fuel / air interaction and fuel distribution in the combustion chamber. As expected, increasing amounts of hydrogen in the fuel are also associated with higher amounts of NOx production, however this effect could be countered by optimization of the fuel staging strategy, based on the mentioned CFD considerations and feedback from high pressure tests.


Author(s):  
Esa Utriainen ◽  
Bengt Sundén

The application of recuperators in advanced thermodynamic cycles is growing due to stronger demands of low emissions of pollutants and the necessity of improving the cycle efficiency of power plants to reduce the fuel consumption. This paper covers applications and types of heat exchangers used in gas turbine units. The trends of research and development are brought up and the future need for research and development is discussed. Material aspects are covered to some extent. Attempts to achieve compact heat exchangers for these applications are also discussed. With the increasing pressure ratio in the gas turbine cycle, large pressure differences between the hot and cold sides exist. This has to be accounted for. The applicability of CFD (Computational Fluid Dynamics) is discussed and a CFD–approach is presented for a specific recuperator. This recuperator has narrow wavy ducts with complex cross-sections and the hydraulic diameter is so small that laminar flow prevails. The thermal-hydraulic performance is of major concern.


Author(s):  
Richard L. Hack ◽  
Vincent G. McDonell

The impact of fuel composition on the performance of power generation devices is gaining interest as the desire to diversify fuel supplies increases. In the present study, measurements of combustion performance were conducted on a commercial natural gas-fired 60kW gas turbine as a function of fuel composition. A statistically designed experiment was carried out and exhaust emissions were obtained for significant amounts of ethane and propane. In addition, a limited study of the effect of inerts was conducted. The results show that emissions of NOx, CO, and NOx∕NO are not well correlated with common descriptions of the fuel, such as higher heating value or methane number. The results and trends indicate that the presence of higher hydrocarbons in the fuel leads to appreciably higher NOx emissions for both test devices operating under similar lean conditions, while having less impact on CO emissions.


Author(s):  
Cedric Devriese ◽  
Gijs Penninx ◽  
Guido de Ruiter ◽  
Rob Bastiaans ◽  
Ward De Paepe

Abstract Against the background of a growing deployment of renewable electricity production, like wind and solar, the demand for energy storage will only increase. One of the most promising ways to cover the medium to long-term storage is to use the excess electricity to produce hydrogen via electrolysis. In a modern energy grid, filled with intermittent power sources and ever-increasing problems to construct large power plants in densely populated areas, a network of Decentralised Energy Systems (DES) seems more logical. Therefore, the importance of research into the design of a small to medium-sized hydrogen fuelled micro Gas Turbine (mGT) unit for efficient, local heat and electricity production becomes apparent. To be able to compete with Reciprocating Internal Combustion Engines (RICEs), the mGT needs to reach 40% electrical efficiency. To do so, there are two main challenges; the design of an ultra-low NOX hydrogen combustor and a high Turbine Inlet Temperature (TIT) radial turbine. In this paper, we report on the progress of our work towards that goal. First, an improvement of the initial single-nozzle swirler (swozzle) combustor geometry was abandoned in favour of a full CFD (steady RANS) design and optimisation of a micromix type combustion chamber, due to its advantages towards NOx-emission reduction. Second, a full CFD design and optimisation of the compressor and turbine is performed. The improved micromix combustor geometry resulted in a NOx level reduction of more than 1 order of magnitude compared to our previous swozzle design (from 1400 ppm to 250 ppm). Moreover, several design parameters, such as the position and diameter of the hydrogen injection nozzle and the Air Guiding Panel (AGP) height, have been optimized to improve the flow patterns. Next to the combustion chamber, CFD simulations of the compressor and turbine matched the 1D performance calculations and reached the desired performance goals. A CFD analysis of the impact of the tip gap and exhaust diffuser cone angle led to a choice of these parameters that improved the compressor and turbine performance with a limited loss in efficiency.


Sign in / Sign up

Export Citation Format

Share Document