Impact of Biochar in Mitigating the Negative Effect of Drought Stress on Cabbage Seedlings

Author(s):  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Metin Turan
2021 ◽  
Author(s):  
Daniel Leybourne ◽  
Tracy Valentine ◽  
Kirsty Binnie ◽  
Anna Taylor ◽  
Alison Jane Karley ◽  
...  

Crops are exposed to myriad abiotic and biotic stressors with negative consequences. Two stressors that are expected to increase under climate change are drought and infestation with herbivorous insects, including important aphid species. Expanding our understanding of the impact drought has on the plant-aphid relationship will become increasingly important under future climate scenarios. Here we use a previously characterised plant-aphid system comprising a susceptible variety of barley, a wild relative of barley with partial-aphid resistance, and the bird cherry-oat aphid to examine the drought-plant-aphid relationship. We show that drought has a negative effect on plant physiology and aphid fitness and provide evidence to suggest that plant resistance influences aphid responses to drought stress, with the expression of aphid detoxification genes increasing under drought when feeding on the susceptible plant but decreasing on the partially-resistant plant. Furthermore, we show that the expression of thionin genes, plant defensive compounds that contribute aphid resistance, increase ten-fold in susceptible plants exposed to drought stress but remain at constant levels in the partially-resistant plant, suggesting they play an important role in modulating aphid populations. This study highlights the role of plant defensive processes in mediating the interactions between the environment, plants, and herbivorous insects.


2020 ◽  
Author(s):  
Yuhang Liu ◽  
Zhongqun He ◽  
Yongdong Xie ◽  
Lihong Su ◽  
Ruijie Zhang ◽  
...  

Abstract A pot experiment was conducted to investigate the growth, physiological changes and mechanism of drought resistance of Phedimus aizoon L. under different levels of water content .CK: 75% ~ 80% of the MWHC (maximum water holding capacity), Mild drought: 55% ~ 60%, Moderate drought: 40% ~ 45%, Severe drought: 20% ~ 25%.We observed that the plants grew normally in the first two treatments, even the mild drought promoted the growth of the roots. In the last two treatments, drought stress had a significant negative effect on plant growth, at the same time, Phedimus aizoon L. also made positive physiological response to cope with the drought: The aboveground part of the plant (leaf, plant height, stem diameter) was smaller, the waxy layer of the leaves was thickened, the stomata of the leaves were closed during the day, and only a few stomata were opened at night, which proved that the dark reaction cycle metabolism mode of the plant was transformed from C3 cycle to CAM pathway. The activity of antioxidant enzymes (SOD, POD and CAT) was continuously increased to alleviate the damage caused by drought. To ensure the relative stability of osmotic potential, the contents of osmoregulation substances such as proline, soluble sugar, soluble protein and trehalose increased correspondingly. But plants have limited regulatory power, with aggravation of drought stress degree and extension of stress time, the MDA content and electrolyte leakage of leaves increased continuously. Observed under electron microscope,the morphology of chloroplast and mitochondria changed and the membrane structure was destroyed. The plant's photosynthetic and respiratory mechanisms are destroyed and the plant gradually die.


2017 ◽  
Vol 29 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Leila Karami ◽  
Nasser Ghaderi ◽  
Taimoor Javadi

Abstract Dust pollution can negatively affect plant productivity in hot, dry areas with high insolation during summer. To understand the effect of water-deficit and its interaction with dust pollution on vegetative and physiological changes in grapevine ʻBidaneh Sefidʼ, two-year-old plants were subjected to drought stress (-0.1 and -1 MPa) and dust treatment in a greenhouse during 2013 and 2014. The results showed that dust had a significant negative effect on the number of leaves, shoot length, root and shoot dry weights, and total dry weight under both drought and well-irrigated conditions. Dust, when applied in combination with drought, caused severe growth reduction. Leaf relative water content (RWC) and membrane stability index (MSI) were reduced under dust and drought stress, while soluble carbohydrate, proline, malondialdehyde (MDA) and H2O2 concentrations increased. Furthermore, dust application resulted in characteristics similar to those induced by water-deficit stress and intensified vegetative and physiological changes when applied together. Dust and drought treatments increased peroxidases and ascorbate peroxidase activities when compared to the control. The results indicate that dust has an adverse effect on the growth and physiology of grapevine and plays a negative role in the response of grapevine to drought stress.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 77-84 ◽  
Author(s):  
Hala Ezzat Mohamed ◽  
Ghada Saber M. Ismail

The changes in plant growth, transpiration rate, photosynthetic activity, plant pigments, electrolyte leakage, H2O2 content, lipid peroxidation, catalase activity and endogenous content of abscisic acid (ABA) were followed in the leaves of two wheat varieties (sakha 93 and 94) during drought stress and subsequent rehydration. Drought stress caused several inhibitory changes in the growth of both wheat varieties, particularly in sakha 94. Exogenous ABA treatment improved the growth of sakha 93 plants as indicated by a higher relative water content, transpiration rate and lower electrolyte leakage and also enhanced the growth during the recovery period. Such improvement may be the result of the induction of enzymatic (catalase) and non-enzymatic (carotenoid) systems. ABA treatment did not ameliorate the negative effect of drought on the growth of sakha 94.


2019 ◽  
Vol 113 (1) ◽  
pp. 63
Author(s):  
Seyyed Hamid REZA RAMAZANI ◽  
Reza TAHERPOUR KALANTARI

<p>To assess the effects of drought stress and sowing date on phenological, morphological, and yield traits of three different cultivars of winter oilseed rape (<em>Brassica napus</em> L.), this study was conducted in research farm of Sarayan agricultural college- University of Birjand in 2016-2017 growing season. Experiment was conducted in a split-factorial based on the randomized complete block design with drought stress in the main plots and three sowing date (September 22, October 6, and October 22) along with three cultivars of canola (‘Homolious’, ‘Hayola50’, and ‘DK7070CL’) in the subplots in three replications. The results of analysis of variance and means comparison analysis showed significant and negative effect of drought stress on seed yield and biological yield traits of investigated cultivars of canola. The interaction effect of drought stress × sowing date × cultivar was only significant on leaf twisting trait at 1 % probability level. ‘Homolious’ was assigned as the most drought tolerance cultivar, based on SI, SSI, RDI, TOL, MP, STI, GMP, YI, YSI, and HARM drought tolerance indexes, whereas ‘Hayola50’ was assigned as most drought sensitive cultivar of oilseed rape.</p>


2019 ◽  
Vol 113 (2) ◽  
pp. 337
Author(s):  
Seyyed Hamid Reza RAMAZANI ◽  
Ali IZANLOO

<p>The effects of drought stress on morphological and yield traits of six different genotypes of triticale along with wheat and barley were studied. The experiment was conducted in agricultural college of Sarayan, University of Birjand in 2016-2017 growing season. Experiment was a split-plot experiment based on randomized complete block design with drought stress in main plots and eight mentioned genotypes in subplots in three replications. Results of analysis of variance and means comparison analysis showed significant and negative effect of drought stress on grain yield and biological yield of all investigated genotypes. There was significant difference among investigated genotypes of triticale, wheat, and barley for grain yield under drought stress at 1 % probability level. Pazh genotype of triticale was found as the most drought tolerance genotype, among all investigated genotypes, based on almost all drought tolerance indexes. The highest significant correlation with grain yield was related to biological yield, harvest index, spike/shoot ratio, height and straw yield. GGE biplot analysis of genotypes based on their Yp and Ys showed that Pazh, Jualino, and Sanabad genotypes of triticale had more trends to Ys principal component than ET-89-11 line, wheat, and barley genotypes, therefore show more tolerance to drought stress.</p>


Author(s):  
Hosein Irani ◽  
Babak ValizadehKaji ◽  
Mohammad Reza Naeini

Abstract Background In this research, the effects of exogenous application of certain biostimulants [amino acid (AA), humic acid (HA), fulvic acid (FA), and seaweed extract (SE)] on the fruit yield and quality, leaf mineral contents, and some critical physio-chemical characteristics of grapevine (Vitis vinifera L.) cv. ‘Yaghouti’ were investigated under well-watered (WW) and drought-stressed (DS) conditions. Results Drought stress caused a remarkable reduction in the weight of 20 berries and fruit yield, and meanwhile a marked increase in the titratable acidity (TA) and total soluble solid (TSS) content of fruits. Application of biostimulants, especially SE, enhanced the weight of 20 berries, fruit yield, and TSS content, and decreased TA in fruits of DS vines. Although drought stress had a negative effect on the chlorophyll content of grapevine, this effect was alleviated by the application of biostimulants, especially SE. Moreover, drought stress made the accumulation of abscisic acid (ABA), proline, total phenol, and soluble carbohydrates, the level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activity of guaiacol peroxidase (GPX) and catalase (CAT) enzymes increased in leaves. Application of biostimulants, especially SE, further increased the accumulation of ABA, proline, total phenol, and soluble carbohydrates and the activity of the antioxidant enzymes, but reduced the level of MDA and H2O2 in DS vines. Under drought stress conditions, concentrations of N, P, and K increased, and concentrations of Fe and Zn decreased; however, DS grapevines treated with biostimulants and especially SE accumulated a higher level of these mineral nutrients than CON vines. Conclusion In sum, as evidenced by the study results, biostimulants have a high potential for promoting fruit yield and quality of grapevine in drought-prone regions.


2020 ◽  
Vol 25 (50) ◽  
pp. 105-111
Author(s):  
Zlatica Miladinov ◽  
Ivana Maksimović ◽  
Svetlana Balešević-Tubić ◽  
Vojin Đukić ◽  
Zorica Nikolić ◽  
...  

Drought is one of the most important factors limiting the successful production of cultivated plants. One of the most sensitive stage to the water deficit in plants is seed germination. There are various methods of pre-sowing treatments that aim to reduce the negative impact of drought stress and improve seed germination. One of them is priming seeds. The aim of this experiment was to examine the effect of priming seeds in solutions - KNO3 (1%), ascorbic acid - AsA (100 mgl-1) and potassium chloride KCl (1%) on the reduction of the negative effect of drought stress. The effect of drought stress was simulated using different concentrations of PEG 6000 (0 (control), -0.30, -0.51, -0.80 MPa). The results of the research showed that with the increase of water deficiency, the effect of priming seeds is greater. At the water potential of the solution of -0.30 MPa, germination energy and seed germination increased on average by 6.77% and 5.08%, while at the water potential of the solution of -0.80 MPa, the increase was 19.28% and 16.75%, respectively. Also, priming seeds significantly reduced the intensity of lipid peroxidation and the content of free proline. From all the above, it can be concluded that priming of seeds is a method that can serve to improve the germination of soybean seeds in conditions of drought stress.


Author(s):  
Aminallah Bagherifard ◽  
Yousef Hamidoghli ◽  
Mohammad Hasan Biglouei ◽  
Mehrorang Ghaedi

Capparis spinosa, commonly known as caper bush, is native to certain hostile growing conditions including sandy or gravelly soils, rocky hillsides, cliffs, stone walls and rock crevices in Mediterranean coastal regions. Caper plant is used for the prevention of soil erosion in sloppy areas. Synthetic superabsorbent polymer was developed as a soil conditioner to heighten plant establishment and growth in drought-prone growing area. During growing seasons of 2016-2017, the effects of soil amendment with the superabsorbent Polymer A200 in four levels (S1= 0, S2= 75, S3= 150 and S4= 225 g) were investigated for each caper plant, considering three levels of irrigation (I1=0, I2= One irrigation per month and I3= one irrigation every two months) on the physical properties of the soil as well as their physiological parameters (chlorophyll a, b and total chlorophyll, carotenoid, Tss, electrolyte leakage) and plant height, yield per hectare, WUE, Soil moister, RWC and leaf area of an established caper plant under drying conditions. Analyses of variance showed that the interaction effects of treatments were significant (p<0.01) in all the studied traits. The results showed that water stress significantly decreased the height of a plant, yield per hectare, WUE, Soil moister, RWC, leaf area, total Chlorophylla, Carotenoid and electrolyte leakage, whereas the application of superabsorbent polymer compensated for the negative effect of drought stress, especially in high rates of polymer application (150 g), where the maximum effect was attained for all the studied traits. These findings strongly suggested that the irrigation intervals of caper can lead to an increase in the application of the superabsorbent polymer.


Sign in / Sign up

Export Citation Format

Share Document