scholarly journals Extracellular Matrix Remodeling in Chronic Liver Disease

Author(s):  
Cristina Ortiz ◽  
Robert Schierwagen ◽  
Liliana Schaefer ◽  
Sabine Klein ◽  
Xavier Trepat ◽  
...  

Abstract Purpose of the Review This review aims to summarize the current knowledge of the extracellular matrix remodeling during hepatic fibrosis. We discuss the diverse interactions of the extracellular matrix with hepatic cells and the surrounding matrix in liver fibrosis, with the focus on the molecular pathways and the mechanisms that regulate extracellular matrix remodeling. Recent Findings The extracellular matrix not only provides structure and support for the cells, but also controls cell behavior by providing adhesion signals and by acting as a reservoir of growth factors and cytokines. Summary Hepatic fibrosis is characterized by an excessive accumulation of extracellular matrix. During fibrogenesis, the natural remodeling process of the extracellular matrix varies, resulting in the excessive accumulation of its components, mainly collagens. Signals released by the extracellular matrix induce the activation of hepatic stellate cells, which are the major source of extracellular matrix and most abundant myofibroblasts in the liver. Graphical abstract

2019 ◽  
Vol 47 (6) ◽  
pp. 1679-1687
Author(s):  
Mavis A.A. Tenkorang ◽  
Upendra Chalise ◽  
Michael J. Daseke, II ◽  
Shelby R. Konfrst ◽  
Merry L. Lindsey

Myocardial Infarction (MI) initiates a series of wound healing events that begins with up-regulation of an inflammatory response and culminates in scar formation. The extracellular matrix (ECM) is intricately involved in all stages from initial break down of existing ECM to synthesis of new ECM to form the scar. This review will summarize our current knowledge on the processes involved in ECM remodeling after MI and identify the gaps that still need to be filled.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


2006 ◽  
Vol 95 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Eric A. Andreasen ◽  
Lijoy K. Mathew ◽  
Christiane V. Löhr ◽  
Rachelle Hasson ◽  
Robert L. Tanguay

2004 ◽  
Vol 191 (6) ◽  
pp. S10
Author(s):  
Wendy Kinzler ◽  
John Smulian ◽  
C. Andrew Kistler ◽  
Rita Hahn ◽  
Peihong Zhou ◽  
...  

2007 ◽  
Vol 44 (6) ◽  
pp. 444-459 ◽  
Author(s):  
Chrystelle Cario-Toumaniantz ◽  
Cédric Boularan ◽  
Leon J. Schurgers ◽  
Marie-Françoise Heymann ◽  
Martine Le Cunff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document