Immunotoxic Assessment of Rosemary Extract

Author(s):  
Luísa Zuravski ◽  
Pamella E. E. Chaves ◽  
Anelise S. Soares ◽  
Queila D. F. Amaral ◽  
Taiane A. Escobar ◽  
...  
Keyword(s):  
Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1931
Author(s):  
Glenda Calniquer ◽  
Marina Khanin ◽  
Hilla Ovadia ◽  
Karin Linnewiel-Hermoni ◽  
David Stepensky ◽  
...  

Oral carotenoids and polyphenols have been suggested to induce photo-protective effects. The aim of the study was to test whether the combination of carotenoids and polyphenols produce greater protective effects from UV-induced damage to skin cells. Such damage is characterized by inflammation and oxidative stress; thus, the photo-protective effect can be partially explained by modulating the nuclear factor kappa B (NFκB) and antioxidant response element/Nrf2 (ARE/Nrf2) transcription systems, known as important regulators of these two processes. Indeed, it was found in keratinocytes that carotenoids and polyphenols inhibit UVB-induced NFκB activity and release of cytokine IL-6. A combination of tomato extract with rosemary extract inhibited UVB-induced release of IL-6 more than each of the compounds alone. Moreover, this combination synergistically activated ARE/Nrf2 transcription systems. Inflammatory cytokines such as IL-6 and TNFα induce the expression of matrix metalloproteinases (MMPs), which leads to collagen breakdown; thus, it is important to note that carnosic acid reduced TNFα-induced MMP-1 secretion from human dermal fibroblasts. The in vitro results suggest beneficial effects of phytonutrient combinations on skin health. To assure that clinical experiments to prove such effects in humans are feasible, the human bioavailability of carotenoids from tomato extract was tested, and nearly a twofold increase in their plasma concentrations was detected. This study demonstrates that carotenoids and polyphenols cooperate in balancing UV-induced skin cell damage, and suggests that NFκB and ARE/Nrf2 are involved in these effects.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 773
Author(s):  
Jacob P. Veenstra ◽  
Bhaskar Vemu ◽  
Restituto Tocmo ◽  
Mirielle C. Nauman ◽  
Jeremy J. Johnson

Rosemary extract (RE) is an approved food preservative in the European Union and contains dietary phytochemicals that are beneficial for gastrointestinal health. This study investigated the effects of RE on dextran sodium sulfate (DSS)-induced colitis and also determined the pharmacokinetics of dietary phytochemicals administered to mice via oral gavage. Individual components of rosemary extract were separated and identified by LC–MS/MS. The pharmacokinetics of two major diterpenes from RE, carnosic acid (CA) and carnosol (CL), administered to mice via oral gavage were determined. Then, the effect of RE pre-treatment on the disease activity index (DAI) of DSS-induced colitis in mice was investigated. The study determined that 100 mg/kg RE significantly improved DAI in DSS-induced colitis compared to negative control. Sestrin 2 protein expression, which increased with DSS exposure, was reduced with RE treatment. Intestinal barrier integrity was also shown to improve via fluorescein isothiocyanate (FITC)–dextran administration and Western blot of zonula occludens-1 (ZO-1), a tight junction protein. Rosemary extract was able to improve the DAI of DSS-induced colitis in mice at a daily dose of 100 mg/kg and showed improvement in the intestinal barrier integrity. This study suggests that RE can be an effective preventative agent against IBD.


2005 ◽  
Vol 93 (2) ◽  
pp. 227-235 ◽  
Author(s):  
Malgorzata Nogala-Kalucka ◽  
Jozef Korczak ◽  
Małgorzata Dratwia ◽  
Eleonora Lampart-Szczapa ◽  
Aleksander Siger ◽  
...  

Meat Science ◽  
2006 ◽  
Vol 73 (1) ◽  
pp. 132-143 ◽  
Author(s):  
M.N. O’Grady ◽  
M. Maher ◽  
D.J. Troy ◽  
A.P. Moloney ◽  
J.P. Kerry

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4390
Author(s):  
Traian Zaharescu ◽  
Ignazio Blanco

In this work the analysis on the stabilization activities of some natural antioxidants (rosemary extract, capsaicin, quercetin or oleanolic acid) is presented. A similar contribution of an inorganic structure—polyhedral oligomeric silsesquioxane (POSS) nanoparticles—is also evaluated. The stabilization effects on the oxidation protection were investigated for several formulations based on ethylene-propylene-diene-terpolymer (EPDM). The samples were examined in pristine state or after γ-irradiation, when the accelerated degradation scission of polymer macromolecules followed by the mitigation of oxidation. Three evaluation procedures: chemiluminescence, FTIR spectroscopy and thermal analysis were applied for the characterization of stability efficiency. The delaying effect of oxidative aging in EPDM matrix is illustrated by the values of activation energy, which are correlated with the type and concentration of embedded compounds. The durability of studied EPDM formulations is discussed for the assessment of material life. The improved behavior of structured hybrids useful for the optimization application regimes is essentially based on the antioxidant properties of polyphenolic components in the cases of natural antioxidants or on the penetration of free radical intermediates into the free volumes of POSS.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Iulia Movileanu ◽  
Máryuri T. Núñez de González ◽  
Brian Hafley ◽  
Rhonda K. Miller ◽  
Jimmy T. Keeton

Fresh ground beef patties with (1) no antioxidant (control), (2) 0.02% butylated hydroxyanisole/butylated hydroxytoluene (BHA/BHT), (3) 3% dried plum puree, or (4) 0.25% rosemary extract were aerobically packaged, irradiated at target doses of 0, 1.5, or 2.0 kGy (1.7 and 2.3 kGy actual doses), and stored at C. The samples were evaluated for lipid oxidation on 0, 3, 7, 14, 21, and 28 days of storage after irradiation. When compared to the control, all antioxidant treatments were effective in retarding () irradiation-induced lipid oxidation during storage as determined by 2-thiobarbituric acid reactive substances (TBARs) values. Rosemary extracts had the same antioxidant effect () as BHA/BHT in irradiated and nonirradiated beef patties, followed by the dried plum puree treatment. Irradiation increased TBARs values, but no differences were noted in oxidation between irradiation dose levels.


2020 ◽  
Vol 23 (20) ◽  
Author(s):  
Huda Musleh Mahmood ◽  
Iman Abbas Khudhair ◽  
Gulboy Abdolmajeed Nasir ◽  
Ali Salah Abdulla AL-Shujairi

Author(s):  
Hesham Shamshoum ◽  
Filip Vlavcheski ◽  
Rebecca E.K. MacPherson ◽  
Evangelia Tsiani

Impaired action of insulin in skeletal muscle, termed insulin resistance, leads to increased blood glucose levels resulting in compensatory increase in insulin levels. The elevated blood glucose and insulin levels exacerbate insulin resistance and contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). In previous studies we found attenuation of free fatty acid-induced muscle cell insulin resistance by rosemary extract (RE). In the present study we investigated the effects of RE on high glucose (HG) and high insulin (HI)-induced muscle cell insulin resistance. Exposure of L6 myotubes to 25 mM glucose and 100 nM insulin for 24 h, to mimic hyperglycemia and hyperinsulinemia, abolished the acute insulin-stimulated glucose uptake, increased the serine phosphorylation of IRS-1 and the phosphorylation/ activation of mTOR and p70S6K. Treatment with RE significantly improved the insulin-stimulated glucose uptake and increased the acute insulin-stimulated tyrosine phosphorylation while reduced the HG+HI-induced serine phosphorylation of IRS-1 and phosphorylation of mTOR and p70S6K. Additionally, treatment with RE significantly increased the phosphorylation of AMPK, its downstream effector ACC and the plasma membrane GLUT4 levels. Our data indicate a potential of RE to counteract muscle cell insulin resistance and more studies are required to investigate its effectiveness in vivo. Novelty: • Rosemary extract (RE) phosphorylated muscle cell AMPK and ACC under both normal and high glucose (HG)/high insulin (HI) conditions. • The HG/HI-induced serine phosphorylation of IRS-1 and activation of mTOR and p70S6K were attenuated by RE. • RE increased the insulin-stimulated glucose uptake by enhancing GLUT4 glucose transporter translocation to plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document