scholarly journals VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Irene N. Gentzel ◽  
Erik W. Ohlson ◽  
Margaret G. Redinbaugh ◽  
Guo-Liang Wang

AbstractAgricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.

2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.


Author(s):  
Silas Obukosia ◽  
Olalekan Akinbo ◽  
Woldeyesus Sinebo ◽  
Moussa Savadogo ◽  
Samuel Timpo ◽  
...  

A new set of breeding techniques, referred to as New Breeding Techniques developed in the last two decades have potential for enhancing improved productivity in crop and animal breeding globally. These include site directed nucleases based genomic editing procedures-CRISPR and Cas associated proteins, Zinc Finger Nucleases, Meganucleases/Homing Endonucleases and Transcription- Activator Like-Effector Nucleases for genome editing and other technologies including- Oligonucleotide-Directed Mutagenesis, Cisgenesis and intragenesis, RNA-Dependent DNA methylation; Transgrafting, Agroinfiltration, Reverse breeding. There are ongoing global debates on whether the processes of and products emerging from these technologies should be regulated as genetically modified organisms or approved as conventional products. Decisions on whether to regulate as GMOs are based both on understanding of the molecular basis of their development and if the GMO intermediate step was used. For example- cisgenesis, can be developed using Agrobacterium tumefaciens methods of transformation, a process used by GMO but if the selection is properly conducted the intermediate GMO elements will be eliminated and the final product will be identical to the conventionally developed crops. Others like Site Directed Nuclease 3 are regulated as GMOs in countries such as United State of America, Canada, European Union, Argentina, Australia. Progress in genome editing research, testing of genome edited bacterial blight resistant rice, development of Guidelines for regulating new breeding techniques or genome editing in Africa is also covered with special reference to South Africa, Kenya and Nigeria. Science- and evidence-based approach to regulation of new breeding techniques among regulators and policy makers should be strongly supported.


Author(s):  
Baike Wang ◽  
◽  
Juan Wang ◽  
Shaoyong Huang ◽  
Yaping Tang ◽  
...  

Tremendous progress has been achieved in the field of gene editing in plants, such as with the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Because of the potential advantages associated with mutant creation and crop germplasm innovation, genome editing technology has been rapidly developed and widely used in crop improvement in recent years. In this review, we aim to document some of the important recent developments and applications of genome-editing tools, especially with respect to gene knock-ins. We introduce the mechanism underlying knock-ins and different outcomes of insertion. We also discuss genome editing tools and methods developed to improve insertion efficiencies. Additionally, we review the recent trends in genetic editing biotechnologies; several strategies are being developed to further improve the efficiency of plant gene knock-ins. Undoubtedly, CRISPR/Cas technology will boost the development of new plant breeding techniques tremendously.


2018 ◽  
Vol 19 (9) ◽  
pp. 2716 ◽  
Author(s):  
Qinfu Sun ◽  
Li Lin ◽  
Dongxiao Liu ◽  
Dewei Wu ◽  
Yujie Fang ◽  
...  

Targeted genome editing is a desirable means of basic science and crop improvement. The clustered, regularly interspaced, palindromic repeat (CRISPR)/Cas9 (CRISPR-associated 9) system is currently the simplest and most commonly used system in targeted genomic editing in plants. Single and multiplex genome editing in plants can be achieved under this system. In Arabidopsis, AtWRKY11 and AtWRKY70 genes were involved in JA- and SA-induced resistance to pathogens, in rapeseed (Brassica napus L.), BnWRKY11 and BnWRKY70 genes were found to be differently expressed after inoculated with the pathogenic fungus, Sclerotinia sclerotiorum (Lib.) de Bary. In this study, two Cas9/sgRNA constructs targeting two copies of BnWRKY11 and four copies of BnWRKY70 were designed to generate BnWRKY11 and BnWRKY70 mutants respectively. As a result, twenty-two BnWRKY11 and eight BnWRKY70 independent transformants (T0) were obtained, with the mutation ratios of 54.5% (12/22) and 50% (4/8) in BnWRKY11 and BnWRKY70 transformants respectively. Eight and two plants with two copies of mutated BnWRKY11 and BnWRKY70 were obtained respectively. In T1 generation of each plant examined, new mutations on target genes were detected with high efficiency. The vast majority of BnWRKY70 mutants showed editing in three copies of BnWRKY70 in examined T1 plants. BnWRKY70 mutants exhibited enhanced resistance to Sclerotinia, while BnWRKY11 mutants showed no significant difference in Sclerotinia resistance when compared to non-transgenic plants. In addition, plants that overexpressed BnWRKY70 showed increased sensitivity when compared to non-transgenic plants. Altogether, our results demonstrated that BnWRKY70 may function as a regulating factor to negatively control the Sclerotinia resistance and CRISPR/Cas9 system could be used to generate germplasm in B. napus with high resistance against Sclerotinia.


2020 ◽  
Vol 1 (1) ◽  
pp. 48-54
Author(s):  
Yaw Asare

The contribution of the Horticultural farming for Ghana economy is that it produces horticultural products which generate income for poor farmers and foreign reserves for the country by means of exporting products. With appropriate policies and technologies like biotechnology, horticulture increases the incomes of smallholder farmers, enhancing rural development. Conventional plant breeding techniques have made considerable progress in the development of improved varieties of horticultural products, there is still room for major improvement which can be achieved using the biotechnology. There is the need to integrate biotechnology to speed up crop improvement programs. Biotechnological tools have revolutionized the entire crop improvement programs by providing new strains of plants, supply of planting material, more efficient and selective pesticides and improved fertilizers. This study assesses the relationship between horticultural farming, biotechnology and food security. The impact of biotechnology on the welfare of smallholder farmers is also assessed. The paper concludes that the role of biotechnology in food security in Ghana cannot be overemphasized but still has a long way to go. Agricultural production and productivity problems in developing countries like Ghana go beyond technological solutions alone; already existing challenges of smallholder farmers should be addressed first. Biotechnology could however contribute to sustainable development by increasing agricultural productivity using new breeding techniques. It can also increase the revenues in agricultural production.


Author(s):  
Emine Açar ◽  
Yıldız Aka Kaçar

In order to increase access to nutritious foods around the world, innovative technologies need to be developed and integrated into agricultural production systems. The new plant breeding techniques developed offer many advantages for making modifications in the plant genome. CRSPR/Cas9, one of the genome editing technologies, is an efficient system with high potential that allows the formation of target-oriented mutations in many agricultural products and allows the mutation of new and desired characters to be obtained through breeding programs without the use of foreign genetic elements. In this review, we have summarize the discovery, evalution, functionality, genome editing studies of plants and the strong potentials of CRSPR/Cas9 technology for plant breeding.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1359
Author(s):  
Javaria Tabassum ◽  
Shakeel Ahmad ◽  
Babar Hussain ◽  
Amos Musyoki Mawia ◽  
Aqib Zeb ◽  
...  

Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. Briefly, in this review, we discuss advancements made in CRISPR systems, base and prime editors, and their applications, to improve rice grain yield, abiotic stress tolerance, grain quality, disease and herbicide resistance, in addition to the regulatory aspects and risks associated with genetically modified rice plants. We also focus on the limitations and future prospects of GETs to improve rice grain quality.


Sign in / Sign up

Export Citation Format

Share Document