Experimental studies on the dynamics and evaporation of tandem liquid droplets in a hot gas flow

1992 ◽  
Vol 35 (11) ◽  
pp. 2921-2929 ◽  
Author(s):  
K.J. Choi ◽  
H.J. Lee
Author(s):  
G. V. Ermolaev ◽  
◽  
A. V. Zaitsev ◽  

The basic experimental studies on boron combustion are done with the same general scheme of the experiment. Boron particles are injected into flat-flame burner products with the help of the transporting jet of cold nitrogen. Boron particle combustion process is registered with a number of optical methods. It is proposed that boron particle is injected into the main hot gas flow instantly, combustion takes place at the flame temperature and predefined oxygen concentration, and the influence of the transporting cold nitrogen jet is ignored. Recent combustion models are based mostly on this type of experiments and characterized with high complexity and low prediction level. In our study, we reconstruct the particle injection conditions for several basic experimental papers. It is shown that in all experimental setups, ignition, combustion, and even total particle burnout take place in the wake of the cold nitrogen jet. This zone is characterized with a much lower gas temperature and oxygen concentration than the main flat burner flow. The total temperature decrease can be about several hundred degrees, oxygen concentration can be 30%-50% lower than that used in the previous analysis of the experimental results. The temperatures of ignition and transition to the second stage of combustion are found with the help of the test particle trajectory and temperature tracking. It is shown that analysis of the influence of boron particles injection on gas temperature and oxygen concentration is mandatory for the development of future combustion models.


2014 ◽  
Vol 21 (5) ◽  
pp. 609-616 ◽  
Author(s):  
G. V. Kuznetsov ◽  
P. A. Kuibin ◽  
P. A. Strizhak
Keyword(s):  
Gas Flow ◽  
Hot Gas ◽  

Author(s):  
A. M. Volk ◽  
A. I. Vilkotsky ◽  
O. N. Pyzhcova

This paper considers the possibility of using vortex devices for interphase interaction while carrying out various physical and chemical processes in the chemical, food, gas production, construction and other industries. In the processes of mass transfer, one or several distributed components perform the transition from one phase to another through the active surface of their interface. To perform the implementation of these processes in absorbers, rectifiers, adsorbers, extractors effectively, the developed surface of the interacting phases acquire s a particular significance. Most of the chemical reactions in reaction devices and heterogeneous media occur when the initial distributed substances are supplied to the reaction zone and when the resulting products are removed from the chemical interaction zone through the phase interface. The processes under consideration are also used in solving environmental problems, viz. for sanitary cleaning of ventilation gases, wet cleaning of emissions. During evaporation, absorption, rectification, wet cleaning of gases and other processes, the problem of preventing the entrainment of liquid droplets with the gas flow is of great importance. One of the designs of a rotary multistage mass transfer apparatus is considered which makes it possible to achieve a finely dispersed liquid spray, uniform in height, with an ascending cross-flow of gas. The diagrams of installations for carrying out the experiment are given. On the basis of experimental studies, the dependence of the average diameter of dispersed liquid droplets on the geometric and hydrodynamic parameters has been obtained. The dispersed composition is described and dependences are given for determining the main characteristics used in physicochemical processes. The theoretical calculation of the movement of particles of the dispersed phase in the working volume of the apparatus at different flow rates of liquid and gas has been carried out. Theoretical and experimental methods were used to estimate the carryover of the liquid phase, an analysis of the process was carried out, and practical recommendations were given.


1976 ◽  
Vol 98 (3) ◽  
pp. 421-426 ◽  
Author(s):  
I. S. Habib

The coupled interaction of cold liquid sprays and a hot gas stream is analyzed. The effect of liquid droplets introduced into a hot gas stream flowing in channels of constant and of varying areas is investigated as a rapid cooling process for a hot gas discharge. The effects of spray distribution, duct geometry, and wall friction are examined. Variations of gas and liquid spray properties such as gas temperature and velocity, droplets velocity, temperature, and distribution are presented as a function of distance along the duct in the direction of flow. The effectiveness of this rapid cooling process for a hot gas flow is assessed.


2021 ◽  
Vol 1045 ◽  
pp. 67-78
Author(s):  
Pavlo Saik ◽  
Roman Dychkovskyi ◽  
Vasyl Lozynskyi ◽  
Volodymyr Falshtynskyi ◽  
Edgar Caseres Cabana ◽  
...  

The paper represents the studies of the process of carbonaceous raw material gasification. The initial material is represented by bituminous coal of grade H with the carbon (C) content of 79.2-85.3 %. Experimental studies have been used to substantiate the parameters of combustible generator gases (СО, Н2, СН4) output depending on the temperature of a reduction zone of the reaction channel and gas flow velocity along its length. It has been identified that the volume of the raw material input to be used for gasification process changes in direct proportion depending on the amount of burnt-out carbon and blow velocity. The gasification is intensified in terms of equal concentration of oxygen and carbon in the reaction channel of an underground gas generator. The gasification rate is stipulated by the intensity of chemical reactions, which depend immediately on the modes of blow mixture supply. Moreover, they depend directly on the intensity of oxygen supply to the coal mass and removal of the gasification products.


Author(s):  
Marc Fraas ◽  
Tobias Glasenapp ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer

Further improvements in film cooling require an in-depth understanding of the influencing parameters. Therefore, a new test rig has been designed and commissioned for the assessment of novel film cooling holes under realistic conditions. The test rig is designed for generic film cooling studies. External hot gas flow as well as internal coolant passage flow are simulated by two individual flow channels connected to each other by the cooling holes. Based on a similarity analysis, the geometry of the test rig is scaled up by a factor of about 20. It furthermore offers the possibility to conduct experiments at high density ratios and realistic approach flow conditions at both cooling hole exit and inlet. The operational range of the new test rig is presented and compared to real engine conditions. It is shown that the important parameters are met and the transfer-ability of the results is ensured. Special effort is put onto the uniformity of the approaching hot gas flow, which will be demonstrated by temperature and velocity profiles. A first measurement of the heat transfer coefficient without film cooling is used to demonstrate the quality of the measurement principle.


Author(s):  
Tatyana A. Brusentseva ◽  
◽  
Vladislav S. Shikalov ◽  
Sergei M. Lavruk ◽  
Vasily M. Fomin

The work is devoted to the deposition of composite powder materials by cold spray method. As a spraying material, a thermoplastic compound «WAY» for marking the roadway was used. An asphalt concrete was used as a substrate. As a result of experimental studies, the dependence of the deposition efficiency on the stagnation temperature of the working air in the ejector nozzle was obtained. The ANSYS Fluent package was used for evaluative modeling of the cold spraying process. Gas flow patterns were obtained in the computational domain without particles and taking into account the interaction of the flow with particles. The trajectory of the particles was calculated for various spraying parameters


2021 ◽  
Vol 2057 (1) ◽  
pp. 012004
Author(s):  
Yu A Borisov ◽  
V V Volkov-Muzilev ◽  
D A Kalashnikov ◽  
H S Khalife

Abstract The article discusses the issues of reducing the size of the cooling unit of the antenna of a radar station by improving the gas-dynamic processes occurring in the air-cooling unit. The results of the experimental studies of the gas flow in a plate-fin heat exchanger, being blown by one axial fan are presented. The feasibility of changing the number of axial fans for organizing a more uniform flow around the heat-exchange surfaces has been determined by calculation and theoretical methods. The calculation results are confirmed by experimental studies of the air flow in the segment of the heat exchanger, which is provided by a smaller fan.


Sign in / Sign up

Export Citation Format

Share Document