scholarly journals Improving the performance of the air-cooling unit in the cooling system of a radar

2021 ◽  
Vol 2057 (1) ◽  
pp. 012004
Author(s):  
Yu A Borisov ◽  
V V Volkov-Muzilev ◽  
D A Kalashnikov ◽  
H S Khalife

Abstract The article discusses the issues of reducing the size of the cooling unit of the antenna of a radar station by improving the gas-dynamic processes occurring in the air-cooling unit. The results of the experimental studies of the gas flow in a plate-fin heat exchanger, being blown by one axial fan are presented. The feasibility of changing the number of axial fans for organizing a more uniform flow around the heat-exchange surfaces has been determined by calculation and theoretical methods. The calculation results are confirmed by experimental studies of the air flow in the segment of the heat exchanger, which is provided by a smaller fan.

2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Chih-Chung Chang ◽  
Chiao-Hung Cheng ◽  
Ming-Tsun Ke ◽  
Sih-Li Chen

This article experimentally and numerically investigates the thermal performance of a 2350-kW completely enclosed motor, which is cooled through an air-to-air heat exchanger. The air in the heat exchanger includes external and internal flow paths. The external air driven by the rotation of the centrifugal fan goes through the heat exchanger mounted on the top of the frame. The internal air absorbs heat released from the stator and the rotor and then transfers the heat to the heat exchanger through the motion of two axial fans and the rotor. Several test rigs have been set up to measure the performance of the fan and the motor. The Fluent software package is adopted to analyze the complicated thermal-fluid interactions among the centrifugal fan, two axial fans, heat exchanger, stator, and rotor. The measured data, including the fan performance curves and the temperature profiles of the heat exchanger and the stator, show good agreement with the simulated results. The numerical calculations also show that the nonuniform external flow distribution through the heat exchanger and the air leakage between the axial fan and the rotor reduces the cooling ability of the motor. A detailed discussion is also included to improve the motor cooling performance.


2021 ◽  
Vol 263 (3) ◽  
pp. 3748-3755
Author(s):  
Wataru Obayashi ◽  
H. Aono ◽  
T. Tatsukawa ◽  
K. Fujii ◽  
K. Takemi

This paper reports computational analysis of location and strength of sound source of the noise generated by a small axial fan widely used as an air-cooling system. High-fidelity Navier-Stokes simulations with high-resolution compact scheme are conducted with an implicit Large Eddy Simulation (LES) method on a HPC system and the resultant large-scale data confirms existence of unsteady vortex structures and their interactions around the impellers, boss and casing of the fan. To identify location and strength of the sound sources, reduced order model analysis is conducted for the distribution of pressure fluctuations in space and time. Snapshot POD (Proper Orthogonal Decomposition) analysis both in time and in circumferential direction, together with conventional FFT analysis, identifies location and strength of the sound sources. In addition, Convolutional Neural Network (CNN) is attempted, which shows more physical mode decomposition and separates some of the important features shown in the snapshot POD analysis. The study shows that the two data-mining techniques considered here identify possible aerodynamic noise sources of the axial fan clearly in comparison to those in the previous studies.


Author(s):  
Mayumi Ouchi ◽  
Yoshiyuki Abe ◽  
Masato Fukagaya ◽  
Takashi Kitagawa ◽  
Haruhiko Ohta ◽  
...  

Energy consumption in data centers has seen a drastic increase in recent years. In data centers, server racks are cooled down in an indirect way by air-conditioning systems installed to cool the entire server room. This air cooling method is inefficient as information technology (IT) equipment is insufficiently cooled down, whereas the room is overcooled. The development of countermeasures for heat generated by IT equipment is one of the urgent tasks to be accomplished. We, therefore, proposed new liquid cooling systems in which IT equipment is cooled down directly and exhaust heat is not radiated into the server room. Three cooling methods have been developed simultaneously. Two of them involve direct cooling; a cooling jacket is directly attached to the heat source (or CPU in this case) and a single-phase heat exchanger or a two-phase heat exchanger is used as the cooling jacket. The other method involves indirect cooling; heat generated by CPU is transported to the outside of the chassis through flat heat pipes and the condensation sections of the heat pipes are cooled down by coolant with liquid manifold. Verification tests have been conducted by using commercial server racks to which these cooling methods are applied while investigating five R&D components that constitute our liquid cooling systems: the single-phase heat exchanger, the two-phase heat exchanger, high performance flat heat pipes, nanofluid technology, and the plug-in connector. As a result, a 44–53% reduction in energy consumption of cooling facilities with the single-phase cooling system and a 42–50% reduction with the flat heat pipe cooling system were realized compared with conventional air cooling system.


1979 ◽  
Vol 101 (4) ◽  
pp. 516-523 ◽  
Author(s):  
James C. Eastwood

The efficiency of turbocharged diesel engines can be increased by cooling the charge air. This paper presents a design approach for liquid-coupled indirect-transfer heat exchanger systems to perform the air-cooling function. The two advantages most commonly cited for this approach to charge-air cooling are (1) the heat exchangers involved are easily packaged so that their shapes can be controlled by judicious design, and (2) simple gas ducting allows for compact machinery arrangements and relatively low charge-air pressure drop. An analytical approach to the design of liquid-coupled indirect-transfer heat exchanger systems is presented. Performance curves are constructed on the basis of this analysis. Four important design conditions are evident from the observation of these performance curves including (1) the relative capacity rate combination of the three fluids (ambient air, coupling liquid, and engine charge-air) which yields the highest overall effectiveness, (2) an optimum coupling-liquid flow rate, (3) the relative effectiveness distribution for each of the two component heat exchangers (hot and cold components), and (4) a broad design range for the optimum area distribution between the hot and cold exchangers. These performance curves serve as a guide for the design of a liquid-coupled charge-air cooling system.


2014 ◽  
Vol 984-985 ◽  
pp. 1138-1146
Author(s):  
R. Vijaykumar ◽  
T. Mukesh ◽  
R. Rudramoorthy

Solar photovoltaic (PV) plays a major role in the renewable energy sector in the field of power production. Production of electricity from solar PV is gaining rapid importance due to its cleaner energy production capacity and it’s adaptability to various climatic conditions. PV cells suffer noticeable drop in efficiency as their operating temperature increases beyond a certain limit. In such cases cooling of the PV cells becomes mandatory. Since the efficiencies of PV cells are in the lower range (a maximum of 18%), a highly effective, inexpensive cooling system is necessary to be employed. Air cooling provides a solution to this cause and is meant to be an better counterpart to water cooling since it overcomes the problems of water cooling such as silt formation, evaporation, soiling and reflection losses. This paper presents a simple mathematical PV/T model to design the cooling system using plate-pin fin extended surface heat exchanger model. A relationship between the heat dissipated and the number of fins along with its dependence on individual fin area is also developed. This model will provide the researchers to design their cooling system according to their PV system geometry.


Volume 3 ◽  
2004 ◽  
Author(s):  
Takamasa Ito ◽  
Jinliang Yuan ◽  
Bengt Sunde´n

Heat exchangers are used in proton exchange membrane fuel cell systems (PEMFCs) for stack cooling, intercooling, water condensation and fuel reforming. Especially, the heat exchanger for the intercooling before the humidifier is investigated in this paper. It is found that, at high pressure or high mass flow rate, the need to cool the air (oxidant) is large. The heat exchanger uses coolant water from the stack cooling system or ambient air as the cold stream. With water-cooling, the volume of the heat exchanger will be small. However, difficulties exist because the small available temperature difference. Air-cooling can be used over a wide operating range but the heat exchanger volume will be large.


Author(s):  
J. Jianguo ◽  
G. Varlamov ◽  
K. Romanova ◽  
L. Suxiang ◽  
L. Zhigang

The research is carried out using a mathematical model of conditions and features of condensation processes with the influence of changes in internal and external thermal resistances of working bodies, which occur during contamination of outside and inside metal pipes of heat exchange surfaces of air condenser. capacitor. Particular attention is paid to the selection, detailing and determination of more than twenty basic parameters that characterize the operation of the direct cooling unit of the condensing unit for the summer, the conditions of heat transfer processes between the working bodies taking into account the finned outer surface of elliptical condenser tubes. The results of experiments on the mathematical model are analyzed and the influence of the incoming air velocity and ambient temperature on the output steam pressure in the condenser direct air cooling system within the change of internal and external thermal resistances in the range 0-0.001(m2·K)/W due to cooling tube contamination is determined. air condenser steam turbine installation. Conditions, character and features of influence of thermal resistance of pollution in cooling tubes on steam pressure at an exit from them are defined, the basic factors defining steam pressure at an exit, necessity of the organization of control of thermal resistance of pollution in a pipe during unit operation at variable operating conditions and expediency is substantiated. conducting test studies of operating modes while taking into account the influence of thermal resistance of external and internal pollution on the thermal efficiency of the cooling unit. Studies have shown that at a fixed value of the heat load of the exhaust steam, the pressure of the steam outlet increases with increasing ambient temperature and decreasing the speed of the incoming air.


Author(s):  
V.B. Volovetskyi ◽  
Ya. Doroshenko ◽  
G. Kogut ◽  
A.P. Dzhus ◽  
I.V. Rybitskyi ◽  
...  

Purpose: The article implies theoretical and experimental studies of the liquid pollution accumulations impact on the efficiency of gathering gas pipelines operation at the Yuliivskyi oil and gas condensate production facility (OGCPF). Research of efficiency of gas pipelines cleaning by various methods. Design/methodology/approach: The research methodology consists of determining the hydraulic efficiency of gathering gas pipelines before and after cleaning of their internal cavity by different methods and comparing the obtained results, which allows to objectively evaluate the efficiency of any cleaning method. CFD simulation of gas-dynamic processes in low sections of gas pipelines with liquid contaminants. Findings: Experimental studies of cleaning efficiency in the inner cavity of the gas gathering pipelines of the Yuliivskyi OGCPF by various methods, including: supply of surfactant solution, creating a high-speed gas flow, use of foam pistons were performed. It was established that cleaning the inner cavity of gas gathering pipelines by supplying a surfactant solution leads to an increase in the coefficient of hydraulic efficiency by 2%-4.5%, creating a high-speed gas flow by 4%-7%, and under certain conditions by 8%-10 % and more. However, for two gas pipelines the use of foam pistons allowed to increase the coefficient of hydraulic efficiency from 5.7 % to 10.5 % with a multiplicity of foam from 50 to 90. be recommended for other deposits.The results of CFD simulation showed that the accumulation of liquid contaminants in the lowered sections of gas pipelines affects gas-dynamic processes and leads to pressure losses above the values provided by the technological regime. With the increase in liquid contaminants volume the pressure losses occur. Moreover, with a small amount of contamination (up to 0.006 m3), liquid contaminants do not have a significant effect on pressure loss. If the contaminants volume in the lowered section of the pipeline is greater than the specified value, the pressure loss increases by parabolic dependence. The increase in mass flow leads to an increase in the value of pressure loss at the site of liquid contamination. Moreover, the greater the mass flow, the greater the impact of its changes on the pressure loss. The CFD simulation performed made it possible not only to determine the patterns of pressure loss in places of liquid contaminants accumulation in the inner cavity of gas pipelines, but also to understand the gas-dynamic processes in such places, which is an unconditional advantage of this method over experimental. Research limitations/implications: The obtained simulation results showed that the increase in the volume of liquid contaminants in the inner cavity of gas gathering pipelines leads to an increase in pressure losses above the value provided by the technological regime. To achieve maximum cleaning of gas gathering pipelines, it is necessary to develop a new method that will combine the considered. Practical implications: The performed experimental results make it possible to take a more thorough approach to cleaning the inner cavity of gas gathering pipelines and to forecast in advance to what extent the hydraulic efficiency of gas gathering pipelines can be increased. Originality/value: The obtained results of CFD simulation of gas-dynamic processes in lowered sections of gas pipelines with liquid contaminants, experimental studies of the effectiveness of various methods of cleaning the inner cavity of gas gathering pipelines has original value.


Author(s):  
Mayumi Ouchi ◽  
Yoshiyuki Abe ◽  
Masato Fukagaya ◽  
Haruhiko Ohta ◽  
Yasuhisa Shinmoto ◽  
...  

Energy consumption in data center has been drastically increasing in recent years. In data center, server racks are cooled down by air conditioning for the whole room in a roundabout way. This air cooling method is inefficient in cooling and it causes hotspot problem that IT equipments are not cooled down enough, but the room is overcooled. On the other hand, countermeasure against the heat of the IT equipments is also one of the big issues. We therefore proposed new liquid cooling systems which IT equipments themselves are cooled down and exhaust heat is not radiated into the server room. For our liquid cooling systems, three kinds of cooling methods have been developed simultaneously. Two of them are direct cooling methods that the cooling jacket is directly attached to heat source, or CPU in this case. Single-phase heat exchanger or two-phase heat exchanger is used as cooling jackets. The other is indirect cooling methods that the heat generated from CPU is transported to the outside of the chassis through flat heat pipes, and condensation sections of the heat pipes are cooled down by liquid. Verification tests have been conducted by use of real server racks equipped with these cooling techniques while pushing ahead with five R&D subjects which constitute our liquid cooling system, which single-phase heat exchanger, two-phase heat exchanger, high performance flat heat pipes, nanofluids technology, and plug-in connector. As a result, the energy saving effect of 50∼60% comparing with conventional air cooling system was provided in direct cooling technique with single-phase heat exchanger.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Kourosh Nemati ◽  
Husam A. Alissa ◽  
Bruce T. Murray ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
...  

The rapid growth in the number of data centers combined with the high-density heat dissipation of computer and telecommunications equipment has made energy efficient thermal management of data centers a key research area. Localized hybrid air–water cooling is one approach to more effectively control the cooling when there is wide variation in the amount of dissipation in neighboring racks while the traditional air cooling approach requires overprovisioning. In a closed, hybrid air–water cooled server cabinet, the generated heat is removed by a self-contained system that does not interact with the room level air cooling system. Here, a hybrid-cooled enclosed cabinet and all its internal components were characterized experimentally in steady-state mode (e.g., experimentally determined heat-exchanger effectiveness and IT characterization). Also, a comprehensive numerical model of the cabinet was developed and validated using the experimental data. The computational model employs full numerical modeling of the cabinet geometry and compact models to represent the servers and the air/water heat exchanger. The compact models were developed based on experimental flow and thermal characterization of the internal components. The cabinet level model has been used to simulate a number of operating scenarios relevant to data center applications such as the effect of air leakage within the cabinet. The effect of the air side and the water side failure of the cooling system on the IT performance were investigated experimentally. A comparison was made of the amount of time required to exceed the operating temperature limit for the two scenarios.


Sign in / Sign up

Export Citation Format

Share Document