The wear resistance and worn metallography of pearlite, bainite and tempered martensite rail steel microstructures of high hardness

Wear ◽  
1985 ◽  
Vol 105 (3) ◽  
pp. 199-222 ◽  
Author(s):  
J. Kalousek ◽  
D.M. Fegredo ◽  
E.E. Laufer
2021 ◽  
Vol 406 ◽  
pp. 419-429
Author(s):  
Amel Gharbi ◽  
Khedidja Bouhamla ◽  
Oualid Ghelloudj ◽  
Chems Eddine Ramoul ◽  
Djamel Berdjane ◽  
...  

The present work is a contribution in investigating the effect of heat treatment on microstructure, hardness and friction wear of A105N steel. Samples of 25x25 mm2 cross-section and 15mm thickness have been prepared from the as-received material and then heat-treated. The samples were austenitized at 1050°C for 60 minutes followed by water quenching, then tempered at 500 and 700°C for 120 minutes. Microstructural changes and their effect on the wear resistance and hardness were investigated according to the applied heat treatments. The main results show that after quenching the structure is mostly composed of quenched martensite, which confers high hardness and friction resistance to the steel. While the tempered structure is composed of tempered martensite and ferrite. As the temperature rises to 700°C, the tempered martensite decreases and is fully transformed to ferrite and cementite. A good wear resistance expressed by a low friction coefficient and a low wear rate is achieved by tempering at 500°C.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


Alloy Digest ◽  
1968 ◽  
Vol 17 (10) ◽  

Abstract HOWMET No. 3 is a cobalt-base alloy having high hardness and compressive strength, high heat and corrosion resistance, along with excellent abrasion and wear resistance. It is recommended for bushings, scrapers, valve parts, and other machinery components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Co-56. Producer or source: Howmet Corporation Metal Products Division.


Alloy Digest ◽  
1962 ◽  
Vol 11 (9) ◽  

Abstract DOUBLE SEVEN is an air hardening high-carbon high-chromium tool and die steel having high hardness and wear resistance. It is recommended for shear blades, cold working tools, and heavy duty dies. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-124. Producer or source: Edgar Allen & Company Ltd, Imperial Steel Works.


Alloy Digest ◽  
2006 ◽  
Vol 55 (3) ◽  

Abstract DuraTech 30 is a superhigh-speed steel evolved from the ASTM M3-2 composition, but with added cobalt. The exotic composition offers improved toughness and very high hardness. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on high temperature performance and wear resistance as well as heat treating, machining, and powder metal forms. Filing Code: TS-629. Producer or source: Timken Latrobe Steel.


2019 ◽  
Vol 813 ◽  
pp. 159-164
Author(s):  
Carlos Alberto Souto ◽  
Gustavo Faria Melo da Silva ◽  
Laura Angelica Ardila Rodriguez ◽  
Aline C. de Oliveira ◽  
Kátia Regina Cardoso

Coatings with high entropy alloys of the AlCoCrFeNiV system were obtained by selective laser melting on low carbon steel substrates. The effect of the variation of the Fe and V contents as well as the laser processing parameters in the development of the coating were evaluated. The coatings were obtained from the simple powder mixtures of the high purity elemental components in a planetary ball mill. The coatings were obtained by using CO2 laser with a power of 100 W, diameter of 0.16 mm, and scan speed varying from 3 to 12 mm/s. Phase constituents, microstructure and hardness were investigated by XRD, SEM, and microhardness tester, respectively. Wear resistance measurements were carried out by the micro-abrasion method using ball-cratering tests. The coatings presented good adhesion to the substrate and high hardness, of the order of 480 to 650 HV. Most homogeneous coating with nominal composition was obtained by using the higher scan speed, 12 mm/s. Vanadium addition increased hardness and gave rise to a high entropy alloy coating composed by BCC solid solutions. Ball cratering tests conducted on HEA layer showing improvement of material wear resistance, when compared to base substrate, decreasing up to 88% its wear rate, from 1.91x10-6 mm3/Nmm to 0.23x10-6 mm3/Nmm.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2225 ◽  
Author(s):  
Martin Löbel ◽  
Thomas Lindner ◽  
Thomas Lampke

High hardness and good wear resistance have been revealed for the high-entropy alloy (HEA) system AlCoCrFeNiTi, confirming the potential for surface protection applications. Detailed studies to investigate the microstructure and phase formation have been carried out using different production routes. Powder metallurgical technologies allow for much higher flexibility in the customisation of materials compared to casting processes. Particularly, spark plasma sintering (SPS) enables the fast processing of the feedstock, the suppression of grain coarsening and the production of samples with a low porosity. Furthermore, solid lubricants can be incorporated for the improvement of wear resistance and the reduction of the coefficient of friction (COF). This study focuses on the production of AlCoCrFeNiTi composites comprising solid lubricants. Bulk materials with a MoS2 content of up to 15 wt % were produced. The wear resistance and COF were investigated in detail under sliding wear conditions in ball-on-disk tests at room temperature and elevated temperature. At least 10 wt % of MoS2 was required to improve the wear behaviour in both test conditions. Furthermore, the effects of the production route and the content of solid lubricant on microstructure formation and phase composition were investigated. Two major body-centred cubic (bcc) phases were detected in accordance with the feedstock. The formation of additional phases indicated the decomposition of MoS2.


2018 ◽  
Vol 12 (4) ◽  
pp. 4180-4190
Author(s):  
Ananda Hegde ◽  
Sathyashankara Sharma ◽  
Gowri Shankar M. C

When the ductile iron which is also known as Spheroidal Graphite (SG) iron, is subjected to austempering heat treatment, the material is known as austempered ductile iron (ADI). This material has good mechanical properties and has various applications in different fields. This revolutionary material with its excellent combination of strength, ductility, toughness and wear resistance has the potential to replace some of the commonly used conventional materials such as steel, aluminium and other light weight alloys as it offers production advantage as well. One of the problems encountered during manufacturing is machining of ADI parts owing to its high hardness and wear resistance. Many researchers over a period of time have reported the machinability aspects of the ADI. This paper presents a review on the developments made on the machinability aspects of ADI along with other mechanical properties.


Author(s):  
Akash Saxena ◽  
Neera Singh ◽  
Bhupendra Singh ◽  
Devendra Kumar ◽  
Kishor Kumar Sadasivuni ◽  
...  

In the present work, phase, microstructure, and wear properties of Al2O3-reinforced Fe–Si alloy-based metal matrix nanocomposites have been studied. Composites using 2 wt.% and 5 wt.% of Si and rest Fe powder mix were synthesized via powder metallurgy and sintered at different temperature schedules. Iron–silicon alloy specimens were found to have high hardness and high wear resistance in comparison to pure iron specimens. Addition of 5 wt.% and 10 wt.% alumina reinforcement in Fe–Si alloy composition helped in developing iron aluminate (FeAl2O4) phase in composites which further improved the mechanical properties i.e. high hardness and wear resistance. Formation of iron aluminate phase occurs due to reactive sintering between Fe and Al2O3 particles. It is expected that the improved behavior of prepared nanocomposites as compared to conventional metals will be helpful in finding their use for wide industrial applications.


2019 ◽  
Vol 823 ◽  
pp. 117-122
Author(s):  
Norifumi Miyanaga ◽  
Jun Tomioka

Electroless nickels have been used in practical applications as versatile materials for anti-wear. The wear resistance is well-improved as a composite coating by incorporating particles. Composite platting offers various mechanical and electoronic functions, depending on the combination of a material matrix and particles deposited. Among them Ni-P plating reinforced with SiC particles have been growing in importance owing to its high hardness and better anti-wear properties. In this study, a Ni-P-SiC/Ni-P-SiC system was evaluated using a ball-on-plate type reciprocating tester, and the results were compared with that of SiC/SiC system at room temperature. As the results, the Ni-P-SiC/Ni-P-SiC system with the surfaces where SiC particles were appeared in clumps had the low frictional coefficient around 0.1 even in water.


Sign in / Sign up

Export Citation Format

Share Document