The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons

1996 ◽  
Vol 96 (1-2) ◽  
pp. 261-276 ◽  
Author(s):  
Françoise Condé ◽  
Jennifer S. Lund ◽  
David A. Lewis
2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


2001 ◽  
Vol 14 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Christian Kaufmann ◽  
Gregor-Konstantin Elbel ◽  
Christoff Gössl ◽  
Benno Pütz ◽  
Dorothee P. Auer

2009 ◽  
Vol 101 (4) ◽  
pp. 1813-1822 ◽  
Author(s):  
P. S. Khayat ◽  
A. Pooresmaeili ◽  
P. R. Roelfsema

Neurons in the frontal eye fields (FEFs) register incoming visual information and select visual stimuli that are relevant for behavior. Here we investigated the timing of the visual response and the timing of selection by recording from single FEF neurons in a curve-tracing task that requires shifts of attention followed by an oculomotor response. We found that the behavioral selection signal in area FEF had a latency of 147 ms and that it was delayed substantially relative to the visual response, which occurred 50 ms after stimulus presentation. We compared the FEF responses to activity previously recorded in the primary visual cortex (area V1) during the same task. Visual responses in area V1 preceded the FEF responses, but the latencies of selection signals in areas V1 and FEF were similar. The similarity of timing of selection signals in structures at opposite ends of the visual cortical processing hierarchy supports the view that stimulus selection occurs in an interaction between widely separated cortical regions.


2011 ◽  
Vol 366 (1571) ◽  
pp. 1726-1738 ◽  
Author(s):  
Anthony P. Atkinson ◽  
Ralph Adolphs

Face processing relies on a distributed, patchy network of cortical regions in the temporal and frontal lobes that respond disproportionately to face stimuli, other cortical regions that are not even primarily visual (such as somatosensory cortex), and subcortical structures such as the amygdala. Higher-level face perception abilities, such as judging identity, emotion and trustworthiness, appear to rely on an intact face-processing network that includes the occipital face area (OFA), whereas lower-level face categorization abilities, such as discriminating faces from objects, can be achieved without OFA, perhaps via the direct connections to the fusiform face area (FFA) from several extrastriate cortical areas. Some lesion, transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) findings argue against a strict feed-forward hierarchical model of face perception, in which the OFA is the principal and common source of input for other visual and non-visual cortical regions involved in face perception, including the FFA, face-selective superior temporal sulcus and somatosensory cortex. Instead, these findings point to a more interactive model in which higher-level face perception abilities depend on the interplay between several functionally and anatomically distinct neural regions. Furthermore, the nature of these interactions may depend on the particular demands of the task. We review the lesion and TMS literature on this topic and highlight the dynamic and distributed nature of face processing.


2017 ◽  
Vol 29 (2) ◽  
pp. 398-412 ◽  
Author(s):  
Jonathan S. Cant ◽  
Yaoda Xu

Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.


2017 ◽  
Vol 29 (6) ◽  
pp. 953-967 ◽  
Author(s):  
Nathan M. Petro ◽  
L. Forest Gruss ◽  
Siyang Yin ◽  
Haiqing Huang ◽  
Vladimir Miskovic ◽  
...  

Emotionally salient cues are detected more readily, remembered better, and evoke greater visual cortical responses compared with neutral stimuli. The current study used concurrent EEG-fMRI recordings to identify large-scale network interactions involved in the amplification of visual cortical activity when viewing aversively conditioned cues. To generate a continuous neural signal from pericalcarine visual cortex, we presented rhythmic (10/sec) phase-reversing gratings, the orientation of which predicted the presence (CS+) or absence (CS−) of a cutaneous electric shock (i.e., the unconditioned stimulus). The resulting single trial steady-state visual evoked potential (ssVEP) amplitude was regressed against the whole-brain BOLD signal, resulting in a measure of ssVEP-BOLD coupling. Across all trial types, ssVEP-BOLD coupling was observed in both primary and extended visual cortical regions, the rolandic operculum, as well as the thalamus and bilateral hippocampus. For CS+ relative to CS− trials during the conditioning phase, BOLD-alone analyses showed CS+ enhancement at the occipital pole, superior temporal sulci, and the anterior insula bilaterally, whereas ssVEP-BOLD coupling was greater in the pericalcarine cortex, inferior parietal cortex, and middle frontal gyrus. Dynamic causal modeling analyses supported connectivity models in which heightened activity in pericalcarine cortex for threat (CS+) arises from cortico-cortical top–down modulation, specifically from the middle frontal gyrus. No evidence was observed for selective pericalcarine modulation by deep cortical structures such as the amygdala or anterior insula, suggesting that the heightened engagement of pericalcarine cortex for threat stimuli is mediated by cortical structures that constitute key nodes of canonical attention networks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rebecca Lowndes ◽  
Barbara Molz ◽  
Lucy Warriner ◽  
Anne Herbik ◽  
Pieter B. de Best ◽  
...  

Most individuals with congenital achromatopsia (ACHM) carry mutations that affect the retinal phototransduction pathway of cone photoreceptors, fundamental to both high acuity vision and colour perception. As the central fovea is occupied solely by cones, achromats have an absence of retinal input to the visual cortex and a small central area of blindness. Additionally, those with complete ACHM have no colour perception, and colour processing regions of the ventral cortex also lack typical chromatic signals from the cones. This study examined the cortical morphology (grey matter volume, cortical thickness, and cortical surface area) of multiple visual cortical regions in ACHM (n = 15) compared to normally sighted controls (n = 42) to determine the cortical changes that are associated with the retinal characteristics of ACHM. Surface-based morphometry was applied to T1-weighted MRI in atlas-defined early, ventral and dorsal visual regions of interest. Reduced grey matter volume in V1, V2, V3, and V4 was found in ACHM compared to controls, driven by a reduction in cortical surface area as there was no significant reduction in cortical thickness. Cortical surface area (but not thickness) was reduced in a wide range of areas (V1, V2, V3, TO1, V4, and LO1). Reduction in early visual areas with large foveal representations (V1, V2, and V3) suggests that the lack of foveal input to the visual cortex was a major driving factor in morphological changes in ACHM. However, the significant reduction in ventral area V4 coupled with the lack of difference in dorsal areas V3a and V3b suggest that deprivation of chromatic signals to visual cortex in ACHM may also contribute to changes in cortical morphology. This research shows that the congenital lack of cone input to the visual cortex can lead to widespread structural changes across multiple visual areas.


2017 ◽  
Author(s):  
Luca Cocchi ◽  
Yang Zhengyi ◽  
Zalesky Andrew ◽  
Stelzer Johannes ◽  
Luke Hearne ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) studies have shown that neural activity fluctuates spontaneously between different states of global synchronization over a timescale of several seconds. Such fluctuations generate transient states of high and low correlation across distributed cortical areas. It has been hypothesized that such fluctuations in global efficiency might alter patterns of activity in local neuronal populations elicited by changes in incoming sensory stimuli. To test this prediction, we used a linear decoder to discriminate patterns of neural activity elicited by face and motion stimuli presented periodically while participants underwent time-resolved fMRI. As predicted, decoding was reliably higher during states of high global efficiency than during states of low efficiency, and this difference was evident across both visual and non-visual cortical regions. The results indicate that slow fluctuations in global network efficiency are associated with variations in the pattern of activity across widespread cortical regions responsible for representing distinct categories of visual stimulus. More broadly, the findings highlight the importance of understanding the impact of global fluctuations in functional connectivity on specialised, stimulus driven neural processes.


2021 ◽  
pp. 112-116
Author(s):  
Simon Lacey ◽  
K. Sathian

The “art infusion effect” suggests that people evaluate products more positively when they are associated with art images than non-art images. Using functional magnetic resonance imaging during viewing of art and non-art images matched for content, the authors investigated whether artistic status alone could activate the reward circuit. Relative to non-art images, art images indeed activated reward-related regions including the ventral striatum. This activity was uncorrelated with response times, ratings of familiarity, or aesthetic preference for art images, suggesting that these variables were unrelated to the art-selective activations. Effective connectivity analyses showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images and was not driven by regions that correlated with aesthetic preference for either art or non-art images. These findings suggest that visual art involves activation of reward circuitry based on artistic status alone and independently of its aesthetic value.


NeuroImage ◽  
2020 ◽  
Vol 220 ◽  
pp. 117077
Author(s):  
Timothy J. McDermott ◽  
Namik Kirlic ◽  
Elisabeth Akeman ◽  
James Touthang ◽  
Kelly T. Cosgrove ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document