Characterization of the wettability of solid particles by film flotation 1. Experimental investigation

1991 ◽  
Vol 60 ◽  
pp. 127-144 ◽  
Author(s):  
D.W. Fuerstenau ◽  
Jianli Diao ◽  
M.C. Williams
2021 ◽  
Vol 228 ◽  
pp. 108950
Author(s):  
Mohd Badrul Salleh ◽  
Noorfazreena M. Kamaruddin ◽  
Zulfaa Mohamed-Kassim ◽  
Elmi Abu Bakar

Author(s):  
M. A. Hassan ◽  
Manabendra Pathak ◽  
Mohd. Kaleem Khan

The temperature and concentration play an important role on rheological parameters of the gel. In this work, an experimental investigation of thermorheological properties of aqueous gel Carbopol Ultrez 20 for various concentrations and temperatures has been presented. Both controlled stress ramps and controlled stress oscillatory sweeps were performed for obtaining the rheological data to find out the effect of temperature and concentration. The hysteresis or thixotropic seemed to have negligible effect. Yield stress, consistency factor, and power law index were found to vary with temperature as well as concentration. With gel concentration, the elastic effect was found to increase whereas viscous dissipation effect was found to decrease. Further, the change in elastic properties was insignificant with temperature in higher frequency range of oscillatory stress sweeps.


Author(s):  
J. R. Tucker ◽  
L. J. Shadle ◽  
S. Benyahia ◽  
J. Mei ◽  
C. Guenther ◽  
...  

Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result. Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques. A database of over seventy materials has been developed to assist in model validation efforts and future designs.


2000 ◽  
Author(s):  
J. Jiang ◽  
Y. Hao ◽  
Y.-X. Tao

Abstract To improve the understanding of convective melting of packed solid particles in a fluid, an experimental investigation is conducted to study the melting characteristics of a packed bed by unmasking the buoyancy forces due to the density difference between the melt and solid particles. A close-loop apparatus, named the particle-melting-in-flow (PMF) module, is designed to allow a steady state liquid flow under a specified temperature. The module is on board NASA’s KC-135 reduced gravity aircraft for the experiments. In the test module, water is used as the fluid, and ice particles are fed to the test section at the beginning of the test. As the liquid flows though the bed, the solid grains melt. A perforate plate, through which liquid can flow while the ice particles are retained, bounds the downstream of the packed bed. From the digital video images the local packed bed thickness is measured under control flow rate, and the melting rate is determined. The temperature distribution along the horizontal direction and vertical direction is measured using 19 thermocouples. An infrared camera is mounted to record the local temperature variation between liquid and solid. The melting rates are presented as a function of upstream flow velocity, temperature and initial average particle size of the packed bed. It is found that the melting rate is influenced mainly by the ratio of the Reynolds number (Re, based on the initial particle diameter) to the square of the Froud number (Fr), and me Stefan number (Ste). In general, the dimensionless melting rate decreases as Re/Fr2 increases and increases as Ste increases. With the absence of gravity, i.e., Froud number approaches infinity, a maximum melting rate can be achieved for otherwise the same test conditions. The increase in the melting rate with the increase in Stephan number also becomes more pronounced under the zero gravity condition.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1763 ◽  
Author(s):  
Gailing Zhang ◽  
Shuang Hui ◽  
Weixin Li ◽  
Wanghua Sui

This paper presents an experimental investigation on the main factors that influence the effects of pouring aggregate to plug a tunnel that has been inundated by groundwater to reduce the flow velocity. Moreover, a criterion for plugging the tunnel under infiltrating water to resist flow is proposed. A range analysis and analysis of variance both show that the influencing factors on the efficiency of plugging in descending order is the aggregate particle size, followed by initial velocity of the water flow, and then the water–solid mass ratio. The sedimentation process of the aggregate is likened to the deposition of solid particles into slurry in which the particles settle under gravitational force, thus accumulating at the bottom of the tunnel model due to the forces of the water flow and gravity. The critical velocity of the water that will transport the aggregate without settling can be used as a criterion to determine whether there has been a successful plug of the resistance to flow in the tunnel. The experimental results show that the critical velocity of fine aggregate is less than that of coarse aggregate, and the section with smaller sized aggregate or fine aggregate that resists water flow is flatter. In addition, the required minimum space between two pouring boreholes for a successful resistance to flow is discussed.


2001 ◽  
Vol 79 (11-12) ◽  
pp. 1415-1419 ◽  
Author(s):  
T Fennell ◽  
S T Bramwell ◽  
M A Green

We present an experimental investigation of the structural and magnetic properties of Ho3SbO7 and Dy3SbO7. These compounds adopt the Y3TaO7 structure, space group C2221. The magnetic rare-earth ions occupy an intricate lattice related to the pyrochlore lattice that occurs in Ho2Ti2O7 and Dy2Ti2O7. The crystal structure of Ho3SbO7 is determined by Rietveld refinement of the powder X-ray diffraction pattern at ambient temperature, and that of the Dy analogue is inferred to be similar. Magnetic susceptibility measurements show that Ho3SbO7 and Dy3SbO7 have negative Curie–Weiss temperatures: –8.4 K (Ho) and –9.2 K (Dy). Magnetic transitions have been detected at 2.0 K (Ho) and 3.0 K (Dy). We discuss the results in terms of the ``dipolar spin ice model'' that has been used to describe Ho2Ti2O7 and Dy2Ti2O7. PACS Nos.: 75.25+z, 75.50Ee, 61.10Nz


Sign in / Sign up

Export Citation Format

Share Document