The relationship of some intermediary metabolites to the production of volatile fatty acids by adult Fasciola hepatica

Author(s):  
H. Lahoud ◽  
R.K. Prichard ◽  
W.R. McManus ◽  
P.J. Schofield
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1812-P
Author(s):  
MARIA D. HURTADO ◽  
J.D. ADAMS ◽  
MARCELLO C. LAURENTI ◽  
CHIARA DALLA MAN ◽  
CLAUDIO COBELLI ◽  
...  

2009 ◽  
Vol 66 (3) ◽  
pp. 346-349 ◽  
Author(s):  
Elvira Verduci ◽  
Silvia Scaglioni ◽  
Carlo Agostoni ◽  
Giovanni Radaelli ◽  
Marialuisa Biondi ◽  
...  

1990 ◽  
Vol 50 (3) ◽  
pp. 425-438 ◽  
Author(s):  
A. J. Rook ◽  
M. Gill

ABSTRACTData on individually recorded silage dry-matter intake (SDMI), concentrate dry-matter intake (CDMI) and live weight of steers and data on silage composition including toluene dry matter (TDM), pH, total nitrogen (N), ammonia nitrogen (NH3-N), volatile fatty acids (VFAs), digestible organic matter in the dry matter (DOMD) and neutral-detergent fibre (NDF) obtained from experiments conducted at three sites were used to obtain simple and multiple linear regressions of SDMI on other variables.Live weight accounted for a high proportion of the variation in intake but this effect could generally be removed by scaling intake by live weight raised to the power of 0·75 (M0·75). CDMI was the most important factor affecting scaled intake in mixed diets. TDM, NH,-N and VFAs all had important effects on SDMI. The relationship of SDMI with TDM was curvilinear suggesting that there is little to be gained in intake terms from wilting to TDM above 250 g/kg. The effect of NH3-N appeared to be related more to its correlation with VFAs than with any other nitrogenous constituent while the VFAs appeared to have a direct effect on SDMI. The effects of N and pH on SDMI were generally small. DOMD and NDF had relatively little effect on SDMI. Significant differences in intercepts between sites were found for most relationships although common slopes were often found.


2021 ◽  
Vol 15 (3) ◽  
pp. 037101
Author(s):  
Tasneem Shetewi ◽  
Melissa Finnegan ◽  
Shane Fitzgerald ◽  
Shuai Xu ◽  
Emer Duffy ◽  
...  

1989 ◽  
Vol 258 (2) ◽  
pp. 427-434 ◽  
Author(s):  
H Takayama ◽  
M H Kroll ◽  
M A Gimbrone ◽  
A I Schafer

Using cultured human umbilical vein endothelial cells, in which phosphatidylcholine (PC) is equally pulse-labelled by various eicosanoid precursor fatty acids (EPFAs), we have studied the remodelling of EPFAs among the phospholipid classes and subclasses with and without activation, and the relationship of this remodelling process to the selective release of arachidonic acid (AA) by phospholipase A2-mediated cell stimulation. When endothelial cells are pulse-incubated with radiolabelled EPFA for 15 min, greater than 80% of cell-associated radioactivity is present in phospholipids, among which greater than 60% is found in 1,2-diacyl-sn-glycero-3-phosphocholine (diacyl PC). After removing unincorporated radioactivity, reincubation of the pulse-labelled cells for up to 6 h results in progressive decrease in EPFA-labelled diacyl PC, increase in AA- or eicosapentaenoic acid (EPA)-labelled 1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine (plasmalogen PE) and increase only in AA-labelled 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl PC). This redistribution of radiolabelled phospholipids is not altered by the presence of excess non-radiolabelled EPFAs. When aspirin-treated EPFA-labelled endothelial cells are stimulated with ionophore A23187, a very selective release of AA is noted in comparison with eicosatrienoate (ETA) or EPA, accompanied by an equivalent decrease in AA-labelled diacyl PC and specific increase in AA-labelled plasmalogen PE and alkyl PC. These selective changes in AA radioactivity induced by A23187 are enhanced 2-fold by pretreating the AA-labelled cells with phorbol 12-myristate 13-acetate, which by itself induces no changes. The changes in radioactivity induced by A23187 without and with phorbol ester among the released AA, the diacyl PC and the plasmalogen PE are significantly correlated with each other. These results indicate that human endothelial cells incorporate EPFAs (AA, ETA, EPA) equally into diacyl PC but selectively release AA esterified into diacyl PC with specific remodelling into plasmalogen PE and alkyl PC.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Mohsen Mazidi ◽  
Hong-kai Gao ◽  
Nitin Shivappa ◽  
Michael D. Wirth ◽  
James R Hebert ◽  
...  

Author(s):  
Paulina Markowiak-Kopeć ◽  
Katarzyna Śliżewska

The relationship between diet and the diversity and function of the intestinal microbiomeand its importance for human health is currently the subject of many studies. The type and proportionof microorganisms found in the intestines can determine the energy balance of the host. Intestinalmicroorganisms perform many important functions, one of which is participation in metabolicprocesses, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids).These acids represent the main carbon flow from the diet to the host microbiome. Maintainingintestinal balance is necessary to maintain the host’s normal health and prevent many diseases.The results of many studies confirm the beneficial effect of probiotic microorganisms on the balanceof the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is tosummarize what is known on the effects of probiotics on the production of short-chain fatty acidsby gut microbes. In addition, the mechanism of formation and properties of these metabolites isdiscussed and verified test results confirming the effectiveness of probiotics in human nutrition bymodulating SCFAs production by intestinal microbiome is presented.


Sign in / Sign up

Export Citation Format

Share Document