Combustion process of gaseous fuels in a closed vessel

JSAE Review ◽  
1994 ◽  
Vol 15 (3) ◽  
pp. 235-237 ◽  
Author(s):  
K Kataoka
Author(s):  
Christian von Grabe ◽  
David van Bebber ◽  
Hubertus Murrenhoff

The development of combustion engines with direct injection requires a comprehensive knowledge of the in cylinder combustion process as well as the used high pressure injection system. One main characteristic of injection systems is their mass flow over time behavior. For prevalent diesel and gasoline injection valves (injectors) fully developed simulation models as well as test benches are available to analyze the injection process. Besides the established engines a trend towards compressed natural gas (CNG) engines in passenger cars is recognized. Due to the small injection duration of a few milliseconds, the flow rate measurement is particularly challenging and requires highly dynamic measuring. The existing test benches are designed and optimized for liquid fuels and are only partly suitable for the evaluation of gaseous fuels such as CNG. A typical test method is to inject fuel into a long tube in which a pressure wave propagates. Based on the pressure signal the mass flow of the injected fuel is approximated. For gaseous fuels the correlation of mass flow and pressure propagation is only known for specific test cases and therefore the method is not directly applicable to gaseous fuels. This paper presents a newly designed measurement device to evaluate the mass flow rate as well as the injector needle displacement during an injection process of gaseous fuels. The test bench is designed to operate in a fully equipped injection system including gas lines, common rail and injection valves, to also investigate the interaction of the individual system components. The design is based on a closed test chamber in which the pressure rises during the injection. To overcome the influence of propagating pressure waves inside the chamber on the measurement, different chamber designs are evaluated. An optimized design, separating the chamber into two volumes which are connected by a damping sleeve, is presented. The injection itself is carried out in a first volume and the measurement is conducted in a second damped volume. Based on the measured pressure the mass flow rate through the injection valve is approximated, utilizing the equations of thermodynamics.


2020 ◽  
Vol 40 (2) ◽  
pp. 47-58
Author(s):  
Ademola Adebukola Dare ◽  
Ebenezer Olubunmi Ige ◽  
Olukunle Cornelius Akinpelu

Common techniques employed to minimize ignition energy of gaseous fuels in micro reactors such as the use of catalyst are being plagued with setbacks. This report demonstrates the use of electric field to sustain combustion, minimize heat loss and enhance reactant mixing in microchannels of varying geometries. We set two defining constructal parameters for serpentine and straight microchannels of 0.05 to 0.25 to investigate geometric effect on the mixing of the reactants. Inlet concentration of propane and oxygen was set at 0.15 mol/dm3 and 0.7 mol/dm3 respectively. Reynolds numbers 400, 470, 530, 600 and 670 corresponding to inlet velocities of 0.06 m/s, 0.07 m/s, 0.08 m/s, 0.09 m/s and 0.1 m/s were used in the straight channel to study the dependence of reaction rate, temperature drop and reactants diffusion on the combustion process. We report that at an inlet temperature of 500 K which was below the propane’s auto ignition temperature of 743 K, the reaction could occur in the presence of a 50 V applied voltage. Increasing constructual parameter (β) yielded an increase in reaction rate and a decrease in temperature drop. At the same constructual parameter, the serpentine geometry displayed a better result with the peak reaction rate of 894 mol/m3s. More so, increase in the Reynolds number and shape factor for the two geometries led to an increase in reaction rate and propane consumption. These findings could be suitably beneficial to provide minimal fuel requirement for miniaturized vehicles and micro-heat engines.


Author(s):  
Raffaela Calabria ◽  
Fabio Chiariello ◽  
Patrizio Massoli ◽  
Fabrizio Reale

In recent years an increasing interest is focused on the study of micro gas turbines (MGT) behavior at part load by varying fuel, in order to determine their versatility. The interest in using MGT is related to the possibility of feeding with a wide range of fuels and to realize efficient cogenerative cycles by recovering heat from exhaust gases at higher temperatures. In this context, the studies on micro gas turbines are focused on the analysis of the machine versatility and flexibility, when operating conditions and fuels are significantly varied. In line of principle, in case of gaseous fuels with similar Wobbe Index no modifications to the combustion chamber should be required. The adoption of fuels whose properties differ greatly from those of design can require relevant modifications of the combustor, besides the proper adaptation of the feeding system. Thus, at low loads or low calorific value fuels, the combustor becomes a critical component of the entire MGT, as regards stability and emissions of the combustion process. Focus of the paper is a 3D CFD analysis of the combustor behavior of a Turbec T100P fueled at different loads and fuels. Differences between combustors designed for natural gas and liquid fuels are also highlighted. In case of natural gas, inlet combustor temperature and pressure were taken from experimental data; in case of different fuels, such data were inferred by using a thermodynamic model which takes into account rotating components behavior through operating maps of compressor and turbine. Specific aim of the work is to underline potentialities and critical issues of the combustor under study in case of adoption of fuels far from the design one and to suggest possible solutions.


Not the least important factors affecting the utilization of gaseous fuels are the remarkable effects of small quantities of catalytic substances, the presence of which may initiate or entirely change the nature of a combustion process. A proper understanding of these factors is therefore of great importance in the control of processes which are fundamental to many parts of applied chemistry. Such processes, however, are also intrinsically interesting for the insight they give into the ultimate mechanism of chemical reaction, and as a result of their study in the light of the theory of chain reactions, many empirical facts relating to combustion processes which previously were obscure now acquire a new significance. Of all these reactions the combustion of hydrogen and carbon monoxide stand in a unique position, for these substances more than any others occur as intermediaries in the burning of gaseous fuels; it is therefore of special interest to realize that the presence of traces of hydrogen may have a profound effect on the combustion of carbon monoxide, not only in lowering the temperature of ignition, but also in influencing the rate of propagation of the flame. This becomes of particular importance when it is remembered that carbon monoxide as used industrially nearly always contains traces of hydrogen.


2021 ◽  
Author(s):  
Sivaji Seepana ◽  
Aritra Chakraborty ◽  
Kannan Kaliyaperumal ◽  
Guruchandran Pocha Saminathan

Abstract The chemical looping combustion (CLC) process is a promising technology for capturing CO2 at the source due to its inherent separation of flue gas from nitrogen. In this regard, the present study is focused on the development of various Rankine cycle based CLC power plant layouts for gaseous and solid fuels. To evaluate the performance of these CLC based cycles, a detailed thermodynamic analysis has been carried out with natural gas (NG)& synthesis gas as gaseous fuels and lignite as solid fuel. For lignite based power production, in-site gasification CLC (iG-CLC) for syngas generation and CLC based combustion process employed. The Energy analysis showed that NG based power plant has a net efficiency of 40.44% with CO2 capture and compression which is the highest among all cases while the same for syngas based power plant is 38.06%. The difference in net efficiency between NG and syngas power plants is attributed to the variation in CO2 compression cost. For lignite based iG-CLC power plant layout, the net efficiency of 39.64% is observed which is higher than syngas fuelledCLC power plant. This shows the potential of CLC technology for power generation applications with or without CO2 capture.


2019 ◽  
Vol 179 (4) ◽  
pp. 264-268
Author(s):  
Łukasz FIEDKIEWICZ ◽  
Ireneusz PIELECHA

Internal combustion engine diagnostics using traditional methods of cylinder pressure signal processing limits the amount of information available about the combustion process. It is necessary to conduct research in order to obtain more precise information – increasing the combustion process diagnosis potential. One such suggestion is the use of an ionization signal and an attempt to link it to the flame development during combustion of gaseous fuels. The article attempts to identify such a relationship using a rapid compression machine due to optical access it provides to the combustion chamber. As a result of the research, the relationships between the ionization voltage (chemical and thermal) of the first combustion phase and the corresponding flame development rates were determined. A relatively high coefficient of determination value was obtained for both relations, which indicates the possibility of obtaining diagnostic information about the combustion process from the ionization signal.


Author(s):  
C. Liu ◽  
G. A. Karim ◽  
A. Sohrabi ◽  
F. Xiao

The effects of the introduction of the gaseous fuels, methane, hydrogen and carbon monoxide into the intake of a variable compression ratio n-heptane fuelled HCCI, CFR engine were investigated. The variations in some of the key combustion and operational parameters were determined experimentally. These included cylinder pressure and its rise rate temporal developments, autoignition timing, combustion durations for both the low and high temperature reaction regions, COV values for IMEP and maximum cylinder pressure, and the incidence of knock and its intensity. In parallel with the experimental investigation, results of a numerical simulation of the processes involved obtained by employing a KIVA based approach while incorporating sufficiently detailed chemical kinetics are presented. It was found that supplementing n-heptane HCCI with gaseous fuels could inhibit the low temperature combustion region and delay to varying extents the high temperature combustion region. Methane admission produced lengthening of the delay to autoignition and extended the combustion durations. It is suggested that supplementing the liquid fuel with methane may be a means for controlling the combustion process of a liquid fuelled HCCI engine while obtaining higher power and acceptable levels of emissions without producing unacceptably heavy knock. However, the addition of hydrogen or carbon monoxide could not reduce the intensity of knock while improving power output.


2020 ◽  
Vol 207 ◽  
pp. 01025
Author(s):  
Jaroslaw Markowski ◽  
Pawel Imilkowski ◽  
Marcin Nowacki ◽  
Damian Olejniczak ◽  
Jacek Madry ◽  
...  

The issue of measuring and determining the calorific value of fuels is related to thermodynamic analysis of the effects of the combustion process aimed at determining the amount of heat transferred to the environment. Currently, there are several methods for determining the calorific value of fuels and their methodology is related to the type of fuel being analyzed. These methods are quite complicated and require the use of specialized measuring equipment. The energy demand of modern civilization along with the need to protect the natural environment prompts the search for new ways to generate energy directed at sources other than conventional fossil fuels. Technologies related to the use of biogas, synthesis gas obtained in biomass or waste gasification processes are being introduced. The use of these fuels in industrial processes of generating heat and electricity requires caloric stability of the fuel. The caloric stability of the fuel is necessary to ensure the stability of thermal energy conversion processes that translate directly into the set values of generated electricity using electric machines. One way to assess the energy quality of a fuel is to measure its calorific value. There are several methods for determining the calorific value of a fuel, but they all require special measurement conditions. The article presents the author’s concept of a calorimeter dedicated to the analysis of the calorific value of gaseous fuels.


1986 ◽  
Vol 108 (1) ◽  
pp. 182-190 ◽  
Author(s):  
J. G. Meier ◽  
W. S. Y. Hung ◽  
V. M. Sood

This paper describes the successful development and application of industrial gas turbines using medium-Btu gaseous fuels, including those derived from biodegradation of organic matters found in sanitary landfills and liquid sewage. The effects on the gas turbine and its combustion system of burning these alternate fuels compared to burning high-Btu fuels, along with the gas turbine development required to use alternate fuels from the point of view of combustion process, control system, gas turbine durability, maintainability and safety, are discussed.


Sign in / Sign up

Export Citation Format

Share Document