Industrial Applications of GC/FT-IR

Author(s):  
Ryujiro Namba
Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 796
Author(s):  
Kaile Zhao ◽  
Chao Ma ◽  
Guohua Gu ◽  
Zhiyong Gao

The study of the depression effect of non-toxic depressants on the flotation separation of chalcopyrite from galena is of great importance for both industrial applications and theoretical research. The mixed depressant (DFinal) of four common inhibitors—sodium carboxymethyl cellulose, sodium silicate, sodium sulfite, and zinc sulfate—exhibited high selectivity during the separation of chalcopyrite from galena. Flotation tests on an industrial copper–lead bulk concentrate showed that using this depressant mixture can achieve highly efficient separation of chalcopyrite from galena at the natural pH of the pulp. Copper and lead concentrates were produced at grades of 21.88% (Cu) and 75.53% (Pb), with recoveries of 89.07% (Cu) and 98.26% (Pb). This showed a similar performance of DFinal with dichromate, which is a depressant that is widely used in industry, but without the environmental risks or the need for pH control. Zeta potential and Fourier transform infrared (FT-IR) results showed that interaction between the surface of the chalcopyrite and the mixed depressant was prevented by pre-treatment with a composite thiophosphate collector (CSU11), while the mixed depressant could expel/replace the composite thiophosphate on the surface of galena by chemical adsorption, depressing its flotation. This is the reason why this non-toxic depressant achieved the selective depression of galena from chalcopyrite, leading to efficient flotation separation.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1052 ◽  
Author(s):  
Juvet Malonda Shabani ◽  
Omotola Babajide ◽  
Oluwaseun Oyekola ◽  
Leslie Petrik

Zeolites are aluminosilicate crystalline materials known for their unique characteristics, and have been prominent for nearly half a century due to their wide and important industrial applications. The production of zeolites, however, remains a challenge due to the high cost of commercial reagents conventionally used as feedstocks. In the current study, hydroxy sodalite (HS) zeolite samples were synthesised from coal fly ash feedstock by a direct hydrothermal synthesis method. The effects of hydrothermal crystallisation synthesis time on phase crystallinity, crystal size, and morphology of the formed HS were investigated. The prepared samples were characterised using XRD, SEM, EDS and FT-IR techniques. The XRD results of the samples prepared with varying synthesis times confirmed the formation of HS from low to high phase purity and crystallinity from 11 to over 98%. The SEM results reflected gradual variation in crystal morphology, of which highly crystalline HS samples were associated with hexagonal-cubic and cubic-platelet crystals. The FTIR, depicting zeolite characteristics of T–O and T–O–T stretching vibrations in the molecular framework, further confirmed the formation of HS zeolites for samples obtained above the 24-h synthesis time. These zeolite samples were then evaluated for their catalytic activities in the conversion of maggot oil to biodiesel. The application of the various hydroxy sodalite samples for the transesterification of maggot oil yielded up to 84.10% biodiesel (FAME) with physicochemical properties that were in compliance with the biodiesel specification standards. This study investigated the novel use of a coal fly ash-derived, heterogeneous HS catalyst in biodiesel production from maggot oil, and indicates its potential to enhance biodiesel yield and quality upon process optimisation tests.


1985 ◽  
Author(s):  
M. L. Mittleman ◽  
D. A. C. Compton

Author(s):  
Verena Fath ◽  
Philipp Lau ◽  
Christoph Greve ◽  
Philipp Weller ◽  
Norbert Kockmann ◽  
...  

AbstractSelf-optimisation constitutes a very helpful tool for chemical process development, both in lab and in industrial applications. However, research on the application of model-free autonomous optimisation strategies (based on experimental investigation) for complex reactions of high industrial significance, which involve considerable intermediate and by-product formation, is still in an early stage. This article describes the development of an enhanced autonomous microfluidic reactor platform for organolithium and epoxide reactions that incorporates a successive combination of inline FT-IR spectrometer and online mass spectrometer. Experimental data is collected in real-time and used as feedback for the optimisation algorithms (modified Simplex algorithm and Design of Experiments) without time delay. An efficient approach to handle intricate optimisation problems is presented, where the inline FT-IR measurements are used to monitor the reaction’s main components, whereas the mass spectrometer’s high sensitivity permits insights into the formation of by-products. To demonstrate the platform’s flexibility, optimal reaction conditions of two organic syntheses are identified. Both pose several challenges, as complex reaction mechanisms are involved, leading to a large number of variable parameters, and a considerable amount of by-products is generated under non-ideal process conditions. Through multidimensional real-time optimisation, the platform supersedes labor- and cost-intensive work-up procedures, while diminishing waste generation, too. Thus, it renders production processes more efficient and contributes to their overall sustainability. Graphical abstract


Author(s):  
Laís Lopes Jesus ◽  
Lídia Mattos Silva Murakami ◽  
Talita de Souza Dias Mello ◽  
Milton Faria Diniz ◽  
Leandro Mattos Silva ◽  
...  

When some materials need to be characterized, the hydroxyl number (IOH) determination is especially useful, mainly for those applied in the aerospace field. Usually, this characterization is performed by wet chemistry, using methodologies involving several steps, such as derivatization. This is a time-consuming and costly step. On the other hand, when the analysis is performed by Fourier transform infrared (FT-IR) spectroscopy, the most used region is the medium infrared (MIR) and transmission techniques are usually employed. However, FT-IR methodology developed error is usually not discussed. FT-IR methodology was developed in near infrared (NIR) and MIR regions, including non-conventional techniques, such as universal attenuated total reflection (UATR) and transflectance (near infrared reflection accessory [NIRA]), and transmission, to determine IOH in surfactants, used in aerospace catalysts/cosmetic products, and polyesters, applied in paints. According to the samples’ characteristics, surfactants were analyzed by transmission/solution and, as received, by NIRA. Polyesters were analyzed by UATR and NIRA, as received. The IOH values for all samples were also measured by wet chemistry and/or potentiometry (supplier’s data) and used as reference. Good linear correlations were observed between 0.939 and 0.976, being considered with good precision, and between 88% (NIRA) and 98% (MIR) of the results were explained by developed methodologies.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2671 ◽  
Author(s):  
Esen Tasgin ◽  
Hayrunnisa Nadaroglu ◽  
Aynur Babagil ◽  
Nazan Demir

Pectinases are an important class of enzymes distributed in many higher plants and microorganisms. One of these enzymes is pectin lyase which has an important role in industrial applications such as clarification of fruit juices. Pectin lyase was purified with 73% yield from Pseudomonas putida bacteria and was 220.7-fold using three phase precipitation technique. Molecular weight of purified pectin lyase was determined as 32.88 kDa with SDS-polyacrylamide gel electrophoresis. The pectin lyase was immobilized covalently via the L-glutaraldehyde spacer to the cellulosic structures of lily flowers (Lilium candidum L.). The immobilized enzyme was then magnetized by modifying with γ-Fe3O4 nanoparticles and determined the most appropriate immobilization conditions as pH 6 and 30 °C. Purified pectin lyase was connected to magnetized support material after 60 min at the rate of 86.4%. The optimum pH and temperatures for the free and immobilized pectin lyase was found to be 6.0 and 40 °C. pH and thermal stabilities of the free and immobilized pectin lyase enzyme have been preserved at high-low temperatures and pH. The structural characterization of the immobilized pectin lyase was performed by SEM, FT-IR, and XRD chromatographic analyses and it was observed that the support materials structure was appropriated to immobilization with pectin lyase and to modify with Fe3O4 nanoparticles.


Holzforschung ◽  
2020 ◽  
Vol 74 (5) ◽  
pp. 505-512 ◽  
Author(s):  
Lucca C. Malucelli ◽  
Diego Lomonaco ◽  
Marco A.S.C. Filho ◽  
Washington L.E. Magalhães

AbstractModification techniques have been widely employed to improve cellulose properties, thus increasing the diversity of industrial applications. While wood pulp cellulose is the most common source for industrial production, little has been studied about the effects of the cellulose source and its purity on modification. Therefore, this article investigates the influence of cellulose source (e.g. wood or cotton) on its modification (acetylation), by estimating the obtained degree of substitution (DS) through Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and back titration. The intense reduction in samples’ crystallinity after acetylation was a result of breakage of inter- and intra-molecular hydrogen bonds, thus confirming acetylation. Although Avicel showed the highest cellulose content and was virtually free of hemicellulose and lignin, this did not affect the acetylation degree, as all samples were successfully triacetylated. The techniques used in this study were ideal for detecting acetylation and estimating the DS, which makes them good tools for modification studies of cellulose derivatives.


2003 ◽  
Vol 57 (6) ◽  
pp. 600-606 ◽  
Author(s):  
Fabiano De Melas ◽  
Viktor V. Pustogov ◽  
Nathan Croitoru ◽  
Boris Mizaikoff

A gas sensor for application in water analysis was developed by combination of a mid-infrared (MIR) hollow waveguide with a Fourier transform infrared (FT-IR) spectrometer and coupling of the hollow waveguide gas sensor module to a supported capillary membrane sampler (SCMS) for continuous liquid-gas extraction. Different hollow waveguides have been characterized in this study for developing an optimized optical configuration. Analysis of industrially relevant compounds has been performed, investigating chlorinated hydrocarbons (CHCs), such as dichloromethane and chloroform, representing highly volatile analytes, and 1,4-dioxane as an example of target compounds with low volatility. The suitability of this spectroscopic IR sensing system for industrial applications is demonstrated under simulated real-world conditions with limits of detection in the ppb (v/v) and ppm (v/v) concentration range for CHCs and 1,4-dioxane, respectively.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4684 ◽  
Author(s):  
Arpitha Chikkanna ◽  
Devanita Ghosh ◽  
Abhinoy Kishore

The halophilic bacterial strain WB1 isolated from a hydrothermal vent was taxonomically characterized using multiple proxies, asHalomonas nitroreducensstrain WB1. When grown on malt extract/yeast extract (MY) medium, it produced large quantities of exopolysaccharide (EPS). The polymer was synthesized at a higher rate during the log and early stationary phases. The anionic polysaccharide is primarily composed of glucose, mannose, and galactose. The studied EPS was highly viscous and had pseudoplastic nature. The EPS was found to be a mixture of three polysaccharides under FT-IR, which makes it less labile to environmental diagenesis. It also has emulsifying and antioxidant activity along with the binding capacity to heavy metals. The EPS has unique and interesting physical and chemical properties, which are different from earlier reported exo-polysaccharides produced by different bacterial genus. This suggests that the extreme geological niches like hypersaline, hyperthermal, hypothermal, and oligophilic environments, which are not well studied so far, can offer extensive and potential resources for medical, biotechnological and industrial applications. The study clearly showed that the thermal springs from the temperate region can be a potent source of many such industrially important microbial genera and need further detailed studies to be carried out.


Sign in / Sign up

Export Citation Format

Share Document