Video signal distribution using low supply voltage amplifiers

2015 ◽  
pp. 691-692
Author(s):  
Jon Munson
1992 ◽  
Vol 27 (4) ◽  
pp. 583-588 ◽  
Author(s):  
Y. Miyawaki ◽  
T. Nakayama ◽  
S. Kobayashi ◽  
N. Ajika ◽  
M. Ohi ◽  
...  

2014 ◽  
Vol 23 (01) ◽  
pp. 1450004 ◽  
Author(s):  
XIAOBO XUE ◽  
XIAOLEI ZHU ◽  
QIFENG SHI ◽  
LENIAN HE

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) employing a deglitching technique is proposed. The deglitching technique is realized by lowering the voltage swing of the control signal as well as by using a method of glitch counteraction (GC). A new switch–driver structure is designed to enable the effectiveness of the GC and provide sufficient driving capability under a low supply voltage. Moreover, the control signal's rise/fall asymmetry which increases the glitch error can be suppressed by using the proposed switch–driver structure. The 12-bit DAC is implemented in 180 nm CMOS technology. The measurement results show that the spurious free dynamic range (SFDR) at low signal frequency is 78.8 dB, and it is higher than 70 dB up to 60 MHz signal frequency at 400 MS/s. The measured INL and DNL are both less than ±0.6 LSB.


2021 ◽  
Author(s):  
Shailendra Tripathi ◽  
Amit Mahesh Joshi

Abstract This work presents a wide-band active filter for RF receiver. The design uses Carbon Nanotube-FET (CNFET) based differential voltage current conveyor (DVCC) for the implementation of the proposed filter. The filter is designed to operate Ku-band frequencies (12-18 GHz), which is used in satellite communication. Additionally, CMOS based circuit and CNFET-based circuit for DVCC are compared for the performance evaluation. HSPICE simulations have been carried out to test the design aspects of the circuit. The CNFET-based circuit has better results in terms of 60 % reduction in the power consumption and about six times improvement in the bandwidth. The filter utilizes low supply voltage of 0.9 V and consumes 524 µW only. The proposed filter outperforms the existing CMOS-based designs which suggests its usage for low-power high-frequency analog circuits.


Author(s):  
Gianluca Cornetta ◽  
David J. Santos ◽  
José Manuel Vázquez

The modern wireless communication industry is demanding transceivers with a high integration level operating in the gigahertz frequency range. This, in turn, has prompted intense research in the area of monolithic passive devices. Modern fabrication processes now provide the capability to integrate onto a silicon substrate inductors and capacitors, enabling a broad range of new applications. Inductors and capacitors are the core elements of many circuits, including low-noise amplifiers, power amplifiers, baluns, mixers, and oscillators, as well as fully-integrated matching networks. While the behavior and the modeling of integrated capacitors are well understood, the design of an integrated inductor is still a challenging task since its magnetic behavior is hard to predict accurately. As the operating frequency approaches the gigahertz range, device nonlinearities, coupling effects, and skin effect dominate, making difficult the design of critical parameters such as the self-resonant frequency, the quality factor, and self and mutual inductances. However, despite the parasitic effects and the low quality-factor, integrated inductors still allow for the implementation of integrated circuits with improved performances under low supply voltage. In this chapter, the authors review the technology behind monolithic capacitors and inductors on silicon substrate for high-frequency applications, with major emphasis on physical implementation and modeling.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950125
Author(s):  
Jianqun Ding ◽  
Lijun Huang ◽  
Xianwu Mi ◽  
Dajiang He ◽  
Shenghai Chen ◽  
...  

In this paper, a full PMOS Colpitts quadrature voltage-controlled oscillator (QVCO) topology, suitable for low supply voltage and low power dissipation, is presented. For an enhanced voltage swing under a low supply voltage, the capacitive-feedback technique is employed. Quadrature coupling is achieved by employing direct bulk coupling technique, leading to reduction in both power and chip area. The proposed QVCO covers a 5% tuning range between 2.325 GHz and 2.435 GHz, and the phase noise is [Formula: see text]128.2 dBc/Hz at 1-MHz offset from the 2.34-GHz carrier while consuming only 0.535 mW from 0.55-V supply voltage, yielding a figure-of-merit (FoM) of 198 dBc/Hz.


Sign in / Sign up

Export Citation Format

Share Document