Mouse Models: Approaches to Generate In Vivo Models for Hereditary Disorders of Mineral and Skeletal Homeostasis

Author(s):  
Siân E. Piret ◽  
Rajesh V. Thakker
Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 460
Author(s):  
Beatriz Medeiros-Fonseca ◽  
Antonio Cubilla ◽  
Haissa Brito ◽  
Tânia Martins ◽  
Rui Medeiros ◽  
...  

Penile cancer is an uncommon malignancy that occurs most frequently in developing countries. Two pathways for penile carcinogenesis are currently recognized: one driven by human papillomavirus (HPV) infection and another HPV-independent route, associated with chronic inflammation. Progress on the clinical management of this disease has been slow, partly due to the lack of preclinical models for translational research. However, exciting recent developments are changing this landscape, with new in vitro and in vivo models becoming available. These include mouse models for HPV+ and HPV− penile cancer and multiple cell lines representing HPV− lesions. The present review addresses these new advances, summarizing available models, comparing their characteristics and potential uses and discussing areas that require further improvement. Recent breakthroughs achieved using these models are also discussed, particularly those developments pertaining to HPV-driven cancer. Two key aspects that still require improvement are the establishment of cell lines that can represent HPV+ penile carcinomas and the development of mouse models to study metastatic disease. Overall, the growing array of in vitro and in vivo models for penile cancer provides new and useful tools for researchers in the field and is expected to accelerate pre-clinical research on this disease.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1868 ◽  
Author(s):  
Oihane Erice ◽  
Adrian Vallejo ◽  
Mariano Ponz-Sarvise ◽  
Michael Saborowski ◽  
Arndt Vogel ◽  
...  

Cholangiocarcinoma (CCA) is a genetically and histologically complex disease with a highly dismal prognosis. A deeper understanding of the underlying cellular and molecular mechanisms of human CCA will increase our current knowledge of the disease and expedite the eventual development of novel therapeutic strategies for this fatal cancer. This endeavor is effectively supported by genetic mouse models, which serve as sophisticated tools to systematically investigate CCA pathobiology and treatment response. These in vivo models feature many of the genetic alterations found in humans, recapitulate multiple hallmarks of cholangiocarcinogenesis (encompassing cell transformation, preneoplastic lesions, established tumors and metastatic disease) and provide an ideal experimental setting to study the interplay between tumor cells and the surrounding stroma. This review is intended to serve as a compendium of CCA mouse models, including traditional transgenic models but also genetically flexible approaches based on either the direct introduction of DNA into liver cells or transplantation of pre-malignant cells, and is meant as a resource for CCA researchers to aid in the selection of the most appropriate in vivo model system.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 235-235
Author(s):  
Mayrim V. Rios Perez ◽  
Michael Pratt ◽  
Ya'an Kang ◽  
Jason B. Fleming

235 Background: Heterotopic patient-derived xenografts (PDX) have been used to assess response to therapy however they underrepresent the role of tumor microenvironment and rarely develop metastasis, both of which are overcome by orthotopic models. Fluorescent orthotopic mouse models require invasive measures to determine tumor bioluminescence. Ultrasonography (US) is a cost-effective, non-invasive imaging technique that has been used in genetically engineered mouse models of pancreatic cancer for a three-dimensional (3D) acquisition of tumor volume, which allows rapid and safe in vivo drug testing. We intend to demonstrate that this technique allows real time monitoring of in vivo response to therapy using patient-derived orthotopic xenograft (PDOX) of pancreatic ductal adenocarcinoma (PDAC). Methods: A non-survival study using PDOX was designed with control (n = 5) and treatment (n = 5) groups. Weekly 3D US images were obtained pre and post-treatment over 4 weeks. Tumor growth curves were generated to monitor progression of disease. Metastatic burden was determined during necropsy. Results: One mouse was excluded from control and treatment groups due to baseline tumor size exceeding 300mm3 and drug toxicity, respectively. Pre-treatment average tumor volumes for control and treatment groups were (36±12)mm3 and (34±12)mm3, respectively. No difference was found in average tumor growth over time between groups (p = 0.9120). A 20% tumor regression was observed per group. Both groups exhibited gross metastasis to spleen, peritoneum, and omentum. Liver, periportal metastasis and local extension to the gastrointestinal and genitourinary system were present on the treatment group. Conclusions: This study describes a rapid technique for in vivo drug response by using 3D US to monitor PDOX; failure of response to therapy correlated with metastatic burden observed. PDOX regression could be explained by tumor heterogeneity. PDOX models, as challenging as they could be, remain to be necessary in vivo models to show therapeutic response to human PDAC, which could be easily monitored using 3D US imaging.


Blood ◽  
2016 ◽  
Vol 128 (14) ◽  
pp. 1829-1833 ◽  
Author(s):  
Yasuyuki Saito ◽  
Jana M. Ellegast ◽  
Anahita Rafiei ◽  
Yuanbin Song ◽  
Daniel Kull ◽  
...  

Key Points Human cytokine knock-in mice are improved in vivo models for multilineage engraftment of mobilized PB CD34+ cells. Humanized mouse models might open new avenues for personalized studies of human pathophysiology of the hematopoietic and immune system.


2021 ◽  
pp. 107385842110017
Author(s):  
Laura Trujillo-Estrada ◽  
Elisabeth Sanchez-Mejias ◽  
Raquel Sanchez-Varo ◽  
Juan Antonio Garcia-Leon ◽  
Cristina Nuñez-Diaz ◽  
...  

Alzheimer’s disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.


2021 ◽  
Vol 5 (16) ◽  
pp. 3134-3146
Author(s):  
Burcu Aslan ◽  
Gorkem Kismali ◽  
Lisa S. Chen ◽  
LaKesla R. Iles ◽  
Mikhila Mahendra ◽  
...  

Abstract Although ibrutinib improves the overall survival of patients with chronic lymphocytic leukemia (CLL), some patients still develop resistance, most commonly through point mutations affecting cysteine residue 481 (C481) in Bruton’s tyrosine kinase (BTKC481S and BTKC481R). To enhance our understanding of the biological impact of these mutations, we established cell lines that overexpress wild-type or mutant BTK in in vitro and in vivo models that mimic ibrutinib-sensitive and -resistant CLL. MEC-1 cell lines stably overexpressing wild-type or mutant BTK were generated. All cell lines coexpressed GFP, were CD19+ and CD23+, and overexpressed BTK. Overexpression of wild-type or mutant BTK resulted in increased signaling, as evidenced by the induction of p-BTK, p-PLCγ2, and p-extracellular signal–related kinase (ERK) levels, the latter further augmented upon IgM stimulation. In all cell lines, cell cycle profiles and levels of BTK expression were similar, but the RNA sequencing and reverse-phase protein array results revealed that the molecular transcript and protein profiles were distinct. To mimic aggressive CLL, we created xenograft mouse models by transplanting the generated cell lines into Rag2−/−γc−/− mice. Spleens, livers, bone marrow, and peripheral blood were collected. All mice developed CLL-like disease with systemic involvement (engraftment efficiency, 100%). We observed splenomegaly, accumulation of leukemic cells in the spleen and liver, and macroscopically evident necrosis. CD19+ cells accumulated in the spleen, bone marrow, and peripheral blood. The overall survival duration was slightly lower in mice expressing mutant BTK. Our cell lines and murine models mimicking ibrutinib-resistant CLL will serve as powerful tools to test reversible BTK inhibitors and novel, non–BTK-targeted therapeutics.


2021 ◽  
Author(s):  
DAVID SARRIO ◽  
ALEJANDRO ROJO-SEBASTIAN ◽  
ANA TEIJO ◽  
MARIA PEREZ-LOPEZ ◽  
EVA DIAZ-MARTIN ◽  
...  

Background: Gasdermin-B gene (GSDMB) is frequently over-expressed in tumors, and its shortest translated variant (isoform 2; GSDMB2) increases aggressive behavior in breast cancer cells. Paradoxically, GSDMB could have either pro-tumor or tumor suppressor properties depending on the biological context. Since GSDMB gene is not present in the mouse genome, deciphering fully the functional roles of GSDMB in cancer requires novel in vivo models. Methods: We first generated by gene targeting a conditional knock-in mouse model (R26-STOP-GB2) harboring human GSDMB2 transcript within the ROSA26 locus. We next derived the R26-GB2 model ubiquitously expressing GSDMB2 in multiple tissues (confirmed by western blot and immunohistochemistry) and performed a comprehensive histopathological analysis in multiple tissues from 75 male and female mice up to 18 months of age. Additionally, we produced the double transgenic model R26-GB2/MMTV-PyMT, co-expressing GSDMB2 and the Polyoma-Middle-T oncogene, and assessed breast cancer generation and progression in GSDMB2-homozygous (n=10) and control (n=17) female mice up to 15 weeks of age. Results: In the R26-GB2 model, which showed different GSDMB2 cytoplasmic and/or nuclear localization among tissues, we investigated if GSDMB2 expression had intrinsic tumorigenic activity. 41% of mice developed spontaneous lung tumors, but neither the frequency nor the histology of these neoplasias was significantly different from wildtype animals. Strikingly, while 17% control mice developed gastric carcinomas, no GSDMB2-positive mice did. No other tumor types or additional histological alterations were frequently seen in these mice. In the R26-GB2/MMTV-PyMT model, the strong nucleus-cytoplasmic GSDMB2 expression in breast cancer cells did not significantly affect cancer formation (number of tumors, latency, tumor weight, histology or proliferation) or lung metastasis potential compared to controls. Conclusions: GSDMB2 expression alone does not have an overall tumorigenic potential in mice, but it might reduce gastric carcinogenesis. Contrary to human cancers, GSDMB2 upregulation does not significantly affect breast cancer generation and progression in mouse models. However, to evidence the GSDMB functions in cancer and other pathologies in vivo may require the presence of specific stimulus or cellular contexts. Our novel mouse strains will serve as the basis for the future development of more precise tissue-specific and context-dependent cancer models.


2020 ◽  
Vol 134 (11) ◽  
pp. 1219-1242 ◽  
Author(s):  
Mikael Adner ◽  
Brendan J. Canning ◽  
Herman Meurs ◽  
William Ford ◽  
Patricia Ramos Ramírez ◽  
...  

Abstract Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma. It is therefore a great need for new animal models that more closely resemble human asthma. The guinea pig has for decades been used in asthma research and a comprehensive table of different protocols for asthma models is presented. The studies have primarily been focused on the pharmacological aspects of the disease, where the guinea pig undoubtedly is superior to mice. Further reasons are the anatomical and physiological similarities between human and guinea pig airways compared with that of the mouse, especially with respect to airway branching, neurophysiology, pulmonary circulation and smooth muscle distribution, as well as mast cell localization and mediator secretion. Lack of reagents and specific molecular tools to study inflammatory and immunological reactions in the guinea pig has however greatly diminished its use in asthma research. The aim in this position paper is to review and summarize what we know about different aspects of the use of guinea pig in vivo models for asthma research. The associated aim is to highlight the unmet needs that have to be addressed in the future.


Sign in / Sign up

Export Citation Format

Share Document