Plastic deformation and yield strength of metals

Author(s):  
Zbigniew H. Stachurski ◽  
Gang Wang ◽  
Xiaohua Tan
2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 762 ◽  
Author(s):  
Rub Nawaz Shahid ◽  
Sergio Scudino

Lightweight metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The effect of the reaction between aluminum and magnesium on the microstructure and mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with the increase of the content of intermetallic reinforcement at the expense of the plastic deformation. The yield strength of the composites follows the iso-stress model when the data are plotted as a function of the intermetallic content.


Author(s):  
Adewale Olasumboye ◽  
Gbadebo Owolabi ◽  
Olufemi Koya ◽  
Horace Whitworth ◽  
Nadir Yilmaz

Abstract This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.


1994 ◽  
Vol 364 ◽  
Author(s):  
Y. Yang ◽  
W. Yan ◽  
J. N. Liu ◽  
S. Hanada

AbstractForging processes at two different temperatures are performed to examine the relation between the microstructure and room temperature tensile properties in a Ce doped Fe3Al-based alloy. Results show that the microstructure and the ductility are sensitive to the forging temperature before annealing treatment. Higher yield strength and ductility can be obtained through forging at a relatively low temperature of 750°C followed by annealing at 800°C and 500°C. It is suggested that the formation of non-equilibrium grain boundaries and banded subgrains within carbide-free areas along grain boundaries enhances the local plastic deformation and results in the improvement of ductility. During the initial deformation at room temperature <111> slip is predominant for both microstructures.


2006 ◽  
Vol 321-323 ◽  
pp. 636-639
Author(s):  
Sang Young Kim ◽  
Hyung Ick Kim ◽  
Chang Sung Seok ◽  
Jae Kwan Lee ◽  
Jin Yong Mo ◽  
...  

Used pipes in various mechanisms and structures are produced from raw material by extruding and drawing. The properties such as yield strength, tensile strength, and elongation of a pipe produced by these methods are different from the properties of their raw material. But designers use the properties of the raw material because the actual properties of the pipes are difficult to obtain from testing. Also, the pipe is used after it has been bent in a complex manner and cut to fit it to mechanisms and structures. The bending process, especially, induces deformation of the pipe’s section and residual stress, which are involved in the plastic deformation of the bended pipes. This residual stress affects the pipe’s properties, including its fatigue life. Therefore, it is very important to understand the residual stress of a material. But, the distribution of residual stress of a U-shaped pipe, which is examined in this study, is very complicated and cannot be measured exactly.


2020 ◽  
Vol 2020 (1) ◽  
pp. 26-32
Author(s):  
K. M. Borysovska ◽  
◽  
Y.M. Podrezov ◽  
S.O. Firstov ◽  
◽  
...  

The influence of grain size on the physical yield strength of the polycrystal is considered by the method of cellular automata. The physical yield strength of the polycrystal in this model is defined as the stress at which, the plastic deformation covers the entire cross section of the sample from one edge to another. Three mechanisms of plastic deformation are considered. The first one is an initiation of plastic flow from grain to grain by dislocation pile-ups. The second one is plastic flow in different grains independently of each other under the action of external stress and the third one is intergranular slippage. Computer simulations have shown that at large grain sizes (d > 200 nm) deformation propagates from grain to grain by initiating dislocations pile-ups, since in this case pile-ups are quite powerful and have a large effect on neighboring grains. At average values of grain size (20 nm <d <200 nm) plastic deformation occurs in the grains independently of each other, and the external strain give a major influence on plastic deformation. With further reduction of the grain sizes (d <20 nm) the main mechanism of deformation is intergranular slippage. because in grains of this size are quite large image stresses that do not allow large dislocation clusters. In small grains the image forces are quite large to prevent large dislocation pile-ups formation, but the mass and volume of grain are quite small to turn or slip its under the action of external stresses. In accordance with these mechanisms, on the calculated dependence of the physical yield strength vs grain size, there are three areas with different angles of inclination in logarithmic coordinates. Keywords: yield point, grain size, Hall―Petch low.


2018 ◽  
Vol 188 ◽  
pp. 03017
Author(s):  
Lise Sandnes ◽  
Øystein Grong ◽  
Jan Torgersen ◽  
Filippo Berto

Hybrid Metal Extrusion & Bonding is a new solid state joining technique developed for aluminium alloys. By the use of filler material addition and plastic deformation sound joints can be produced at operational temperatures below 400 °C. This makes the HYB process more flexible and less vulnerable to defects compared to conventional solid state processes. Here, we present the results form an exploratory investigation of the mechanical integrity of a 4 mm AA6082-T6 HYB joint, covering both hardness, tensile and Charpy V-notch testing of different weld zones. The joint is found to be free from internal defects like pores, cavities and kissing bonds. Still, a soft heat affected zone (HAZ) is present. The joint yield strength is 54 % of the base material, while the corresponding joint efficiency is 66%. Therefore, there is a potential for further optimization of the HYB process. This work is now in progress.


2010 ◽  
Vol 638-642 ◽  
pp. 1934-1939 ◽  
Author(s):  
Y.B. Chun ◽  
S.H. Ahn ◽  
D.H. Shin ◽  
S.K. Hwang

Recent advances in the severe plastic deformation technique have shown that effective refinement of the microstructure can be achieved in pure metals as well as in alloys. Among the various methods of severe plastic deformation, equal channel angular pressing has been the subject of numerous research works. Since the grain refining effect of this technique appears to reach a peak at a level of approximately 200 nm further microstructural changes are sought—deformation at a cryogenic temperature being one of the candidate routes. In the present study, we opted to combine equal channel angular pressing and low temperature plastic deformation to refine the microstructure of commercially pure V. The starting microstructure consisted of equiaxed grains with an average size of 100 micrometers. This microstructure was refined to a 200 nm thick lamellar microstructure by 8 passes of equal channel angular pressing at 350°C. The lamellar thickness was further reduced to 140 nm upon subsequent cryogenic rolling, which resulted in room temperature yield strength of 768 MPa. In the specimens, recrystallization annealed at 850°C, the grain size reached 1000 nm or larger, and the yield strength obeyed the Hall-Petch relationship with that grain size. The tensile elongation value, which was low and insensitive to the grain size in the as-deformed state, increased significantly up to 43% with the recrystallization annealing.


Sign in / Sign up

Export Citation Format

Share Document