Experimental part

Author(s):  
Claude Lamy ◽  
Christophe Coutanceau ◽  
Stéve Baranton
Keyword(s):  
Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Nikolay V. Perepelkin ◽  
Feodor M. Borodich ◽  
Alexander E. Kovalev ◽  
Stanislav N. Gorb

Classical methods of material testing become extremely complicated or impossible at micro-/nanoscale. At the same time, depth-sensing indentation (DSI) can be applied without much change at various length scales. However, interpretation of the DSI data needs to be done carefully, as length-scale dependent effects, such as adhesion, should be taken into account. This review paper is focused on different DSI approaches and factors that can lead to erroneous results, if conventional DSI methods are used for micro-/nanomechanical testing, or testing soft materials. We also review our recent advances in the development of a method that intrinsically takes adhesion effects in DSI into account: the Borodich–Galanov (BG) method, and its extended variant (eBG). The BG/eBG methods can be considered a framework made of the experimental part (DSI by means of spherical indenters), and the data processing part (data fitting based on the mathematical model of the experiment), with such distinctive features as intrinsic model-based account of adhesion, the ability to simultaneously estimate elastic and adhesive properties of materials, and non-destructive nature.


The experimental part of the research to be described below is given in two main sections. Of these Section 1 deals with the results obtained in measurements of the rate of displacement of oxygen from combination with hœmoglobin by carbon monoxide. Section 2 gives, in corresponding fashion, the results for the reverse reaction, namely, the displacement of carbon monoxide from combination with hœmoglobin by oxygen. The theoretical aspects of theses two reactions have already been dealt with in broad outline at the end of Part IV, with which it will be assumed that the reader is fully acquainted. Some further considerations, however, arise and these are given in Section 3 of the present paper.


2017 ◽  
Vol 52 (15) ◽  
pp. 2065-2074 ◽  
Author(s):  
Bo Wang ◽  
Nobuhide Uda ◽  
Kousei Ono ◽  
Hiroto Nagai

In this paper, a combination of experimentation and analysis is used to study the effect of micro in-plane fiber waviness on the compressive properties of unidirectional fabric composites. The experimental part includes a measurement of the micro in-plane fiber waviness in two types of unidirectional fabrics, manufacturing composites with each unidirectional fabric via VaRTM process and tests for establishing the compressive modulus and strengths of the composites. The compressive strengths were confirmed to be affected by the micro in-plane fiber waviness, but the compressive modulus was not. Furthermore, a two-dimensional numerical model is proposed to explain our experimental results. The numerical results indicate that the tensile stress (owing to the micro in-plane fiber waviness) and compressive stress along the weft and warp directions, respectively, of the composite lead to reductions in the compressive strength.


2021 ◽  
Vol 320 ◽  
pp. 181-185
Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Irina Shvetsova ◽  
Aleksandrs Korjakins

Because of low calcination temperature, magnesia binders are attributed as low-CO2 emission materials that can benefit the environment by reducing the energy consumption of building sector. Portland cement in different areas of construction can be replaced by magnesia binder which do not require autoclave treatment for hardening, it has low thermal conductivity and high strength properties. Magnesium-based materials are characterized by decorativeness and ecological compatibility.The experimental part of this research is based on the preparation of magnesia binders by adding raw materials and calcinated products and caustic magnesia. The aim of this study was to obtain low-CO2 emission and eco-friendly material using local dolomite waste materials, comparing physical, mechanical, thermal properties of magnesium binders.


Author(s):  
O.E. Luneva ◽  

Food additives are positioned as harmless, although, their components affectthe physiological processes associated with the permeability of the wall of the gastrointestinal tract (GIT) and intestinal microbiota. This article describes thecarrageenan supplement and its effects on the body in in vitro and in vivo experiments. The experimental part is devoted to analysis of the intestinalmicrobiota of laboratory rats with the consumption of the carrageenan dietary supplement in the amount of about 4,4 % of the standard feed.


2016 ◽  
Vol 62 (2) ◽  
pp. 1-4
Author(s):  
Adrian Pryszcz ◽  
Barbora Grycová ◽  
Ivan Koutník ◽  
Veronika Blahůšková

Abstract The main goal of this paper was to characterize and find a useful solution for the decomposition of tar deposits. For the experimental part, tar deposits, formed by polymerization and condensation reactions, were chosen from a storage tank for tars. At first the initial analyses of tar deposits (elemental, thermogravimetric, and calorimetric analyses) were performed. After the characterization, the tar deposits were extracted in the Soxhlet extractor by acetone, toluene, and quinolone and activated with potassium hydroxide. As the final step of this work, the sorption characterization on the 3Flex Surface Characterization Analyzer (Micromeritics) was performed. The specific surface area of the samples was evaluated using two methods - a single point measurement at p/p0=0.2 and BET method. Micropore and external surface areas were calculated based on a t-plot analysis (carbon black model).


Sign in / Sign up

Export Citation Format

Share Document