SIEVE ANALYSIS OF COARSE AND FINE AGGREGATES

Author(s):  
Irving Kett
2021 ◽  
Vol 27 (10) ◽  
pp. 34-49
Author(s):  
Muhammad Arf Muhammad ◽  
Bilal K. Mohammed ◽  
Faris R. Ahmed ◽  
Bayan S. Al Numan

Fine aggregates used for concrete works in Sulaymaniyah city frequently fail to meet the standard requirements for gradation and fineness modulus in cement concrete. This paper aims to critically evaluate gradation, fineness modulus, and clay contents of various natural sands produced and used for concrete work in the region.  Sixteen field sand samples were collected from various sites in Darbandikhan (5 samples), Qalat Dizah (5 samples), Koysinjaq (5 samples), and Piramagroon (1 sample) confirming to ASTM D75. The field samples were parted into test specimens based on ASTM C702. Then, sieve analysis was carried out on the oven-dry test specimens in compliance with ASTM C136. The test results of fine aggregates were compared with American, British, and Iraqi specification standards using ASTM C33, BS 882, and IQS No. 45. It was revealed that only three sands satisfy the ASTM gradation limits while others do not comply and are on the coarser side. Also, eight samples meet the requirements recommended by BS 882, whereas five samples meet limits by IQS No. 45. It was found that only three sands have the fineness modulus within the ranges recommended by ACI 211.1 and ACI 211.4, while the others have high values. Furthermore, it was found that all sands include an allowable amount of finer particles passing sieve size 0.075 mm. In order to improve particle size distributions, it is recommended to use the blending method to obtain a suitable fine aggregate from two or more failed sands.


2020 ◽  
Vol 8 (5) ◽  
pp. 2851-2854

There are numerous negative social and environmental effects of overuse of river sand for construction. To reduce this, various substitutes have been used such as quarry dust, demolished concrete waste, industrial waste such as copper slag, eco sand etc. GBFS (Granulated Blast Furnace Slag) is a slag obtained from the manufacture of iron in steel industries. This research aims to investigate the possibility of replacing Granulated Blast Furnace Slag (GBFS) as sand substitutes in concrete. In this research, natural sand was replaced by GBFS in various percentages (0%, 25%, 50%, 75% and 100%) with a constant water cement ratio of 0.45. Tests such as sieve analysis, specific gravity, fineness modulus and bulk density were done for fine aggregates and GBFS sample. Different mixed proportions for different percentage replacement of fine aggregates was obtained for M30 grade concrete as per IS 10262: 2009. The durability test was done for cubes of control mix and GBFS mix (0%, 25%, 50%, 75% and 100%). It was found the strength of concrete was improved due to the addition of GBFS as fine aggregates. Test results showed that the compressive strength of concrete increased with increase in percentage of GBFS up to 75%. Beyond 75%, there was a marginal decrease in strength of concrete.


2019 ◽  
Vol 10 (2) ◽  
pp. 94-100
Author(s):  
C. K. Kiptum ◽  
L. Rosasi ◽  
O. Joseph ◽  
E. Odhiamba

This paper presents some mechanical properties of concrete reinforced with dry water hyacinth stem and quarry dust as fine aggregates. Fresh water hyacinth stems were collected from Lake Victoria; sun dried for a week and chopped into 3 cm long pieces. Sieve analysis was done for fine and coarse aggregates. Concrete mix designs were done according to Department of Environment (United Kingdom) method. A total of 32 cubes of concrete were cast (16 horizontal orientations of fiber, and 16 vertical orientations of fibers). Dry water hyacinth stems were incorporated during casting of cubes in terms of 0%, 0.1%, 0.2% and 0.3% of the volume of cube. Average compressive and split tensile strength tests were performed after 28 days. The results showed concrete composed of horizontal orientation of dry water hyacinth stem fibers had an average optimum tensile strength of 1.5 N/mm2 corresponding to 0.1% replacement. In vertical orientation, there was uniform decrease in tensile strength as the percentage replacement increased. Compressive strengths decreased slightly as the composition of water hyacinth fibers increased for both vertical and horizontal orientations.


CONCREEP 10 ◽  
2015 ◽  
Author(s):  
Tomiyuki Kaneko ◽  
Keiichi Imamoto ◽  
Chizuru Kiyohara ◽  
Akio Tanaka ◽  
Ayuko Ishikawa

Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


2020 ◽  
pp. 49-52
Author(s):  
Trine Aabo Andersen

A new fast measuring method for process optimization of sucrose crystallization using image analysis based on high quality images and algorithms is introduced. With the mobile, non-invasive at-line system all steps of the sucrose crystallization can be measured to determine the crystal size distribution. The image analysis system is easy to operate and is as well an efficient laboratory solution with user-friendly and customized software. In comparison to sieve analysis, image analyses performed with the ParticleTech Solution have been proven to be reliable.


2019 ◽  
Vol 11 (6) ◽  
pp. 1782 ◽  
Author(s):  
Jacek Szulej ◽  
Paweł Ogrodnik ◽  
Beata Klimek

The article presents the results of research on the use of ceramic ware waste as aggregate in concrete production. Four concrete mixtures with aluminous cement were prepared, each with a different admixture of clinoptilolite. The only used aggregate was crushed waste ceramic sanitary ware obtained from a Polish sanitary fixture production plant. As part of the studies, a compressive test of cubic samples at different curing times ranging from 7 to 90 days was performed. Prior to the preparation of the samples, a sieve analysis and an elemental analysis of the obtained aggregate were conducted. In the framework of the testing, the bimodal distribution of clinoptilolite grains was determined, as well as its chemical composition. The conducted compressive tests demonstrated high strength of concrete containing ceramic aggregate and aluminous cement with an addition of clinoptilolite. In order to determine the impact that adding zeolite exerts on the phase composition and the structure of concrete samples, an analysis of the phase composition (XRD) and scanning electron microscopy examination (SEM) were performed. Furthermore, tests of abrasion, water penetration under pressure and frost resistance were conducted, determining particular properties of the designed mixtures. The abrasion tests have confirmed that the mixtures are highly abrasion-resistant and can be used as a topcoat concrete layer. The conducted tests of selected properties have confirmed the possibility of using waste ceramic cullet and a mineral addition of clinoptilolite in concrete production.


Sign in / Sign up

Export Citation Format

Share Document