Reliability Apportionment for Systems with Nonexponential time to Failure

Author(s):  
M. Jaeger ◽  
Z. Porat ◽  
D. Tzidony
Keyword(s):  
Author(s):  
M. Sliusarenko ◽  
O. Semenenko ◽  
T. Akinina ◽  
O. Zaritsky ◽  
V. Ivanov

In the article, based on the analysis of the requirements for the readiness of weapons and military equipment during combat use and the reliability of their operation in the course of combat operations, it was discovered that one of the reasons that causes a discrepancy between the declared failures and real ones may be the incorrect choice and justification of the time distribution function up to the refusal of military means. As a rule, during the development of these tools, the function of distribution of time to failure is chosen by analogy with similar patterns of weapons and military equipment. In the theory of reliability, special attention is given to choosing the function of time-breaking non-response (failures or failures). Therefore, the article deals with the questions of evaluating the effectiveness of functioning of complex systems and methods of modeling the processes of their functioning, taking into account the laws of the distribution of random variables. The discrepancy between the declared irregularity of the military apparatus and the fact that is actually observed in the troops can be explained by the incorrectly accepted hypothesis about the distribution of time to failure. Therefore, the article analyzes the order of the justification of such a function without taking into account the enemy's fire impact and the proposed variant of determining the function of distribution of the time of work until the refusal of the model of military equipment. The article also cites the reasons for the discrepancy between the claimed missile defense equipment and what is actually observed in the troops. The proposed mathematical model of faultlessness, which at stages of designing and design will allow to set requirements to the model of technology with the help of analytical description. The sequence of calculations of non-failure indexes based on the use of Weibull distribution is substantiated.


2018 ◽  
pp. 65-71 ◽  
Author(s):  
I. V. Arkhipova

Within the framework of this article the question of reliability evaluation of resonators with strict performance requirements for resistance to external factors is considered. Due to the increase in requirements for these products in terms of gamma-percentile time to failure and gamma-percentile storageability time, there is a need to develop new ideas and methods of reliability theory. As a methodical basis for generalization of data of their life cycle the approach on the basis of Bayesian theorem is offered. Based on the results of generalization of the statistics of resonator tests for various types of climatic influences and reliability tests, as well as the results of their use in the electronic equipment have been identified their main reliability indicators.


1991 ◽  
Vol 225 ◽  
Author(s):  
D. B. Knorr ◽  
K. P. Rodbell ◽  
D. P. Tracy

ABSTRACTPure aluminum films are deposited under a variety of conditions to vary the crystallographic texture. After patterning and annealing at 400°C for 1 hour, electromigration tests are performed at several temperatures. Failure data are compared on the basis of t50 and standard deviation. Microstructure is quantified by transmission electron microscopy for grain size and grain size distribution and by X-ray diffraction for texture. A strong (111) texture significantly improves the electromigration lifetime and decreases the standard deviation in time to failure. This improvement correlates with both the fraction and sharpness of the (111) texture component.


2021 ◽  
Vol 19 ◽  
pp. 228080002098740
Author(s):  
Haiyun Liu ◽  
Yanfeng Li ◽  
Guangquan Chai ◽  
Yuan Lv ◽  
Changjian Li ◽  
...  

Objective: To evaluate the effect of synchronous water irrigation on the fatigue resistance of nickel-titanium instrument. Methods: A standardized cyclic fatigue test models were established, and five types of nickel-titanium instruments (PTU F1, WO, WOG, RE, and M3) were applied. Each instrument was randomly divided into two groups ( N = 12). There was synchronous water irrigation in the experimental group, and no water irrigation in the control group. Besides, ProTaper Universal F1 was randomly divided into 10 groups ( N = 20). In the static group, nickel-titanium instruments were divided into one control group (no irrigation, N = 20) and six experimental group (irrigation, N = 20) based on different flow rate, angle and position; while in the dynamic group, instruments were divided into one control group (no irrigation, N = 20) and two experimental group (irrigation, N = 20) based on different flow rate. The rotation time (Time to Failure, TtF) of instruments was recorded and analyzed. Results: According to the static experiments, the TtF of instruments in all experimental groups was significantly higher than that in the static control group. Besides, the dynamic tests of PTU F1 showed that the TtF in the experimental group was significantly higher than that in the dynamic control group. Compared with control group, the TtF in the experimental groups increased by at least about 30% and up to 160%. The static and dynamic tests of PTU F1 showed that the TtF of nickel-titanium instrument in all experimental groups was significantly higher than that in the control group. However, there was no significant difference between any two experimental groups. Conclusion: Regardless of dynamic or static model, TtF with irrigation was longer than that with non-irrigation, indicating that synchronous irrigation can increase the fatigue resistance of nickel-titanium instrument. However, different irrigation conditions may have the same effect on the fatigue resistance.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 876
Author(s):  
Igor Gonçalves ◽  
Laécio Rodrigues ◽  
Francisco Airton Silva ◽  
Tuan Anh Nguyen ◽  
Dugki Min ◽  
...  

Surveillance monitoring systems are highly necessary, aiming to prevent many social problems in smart cities. The internet of things (IoT) nowadays offers a variety of technologies to capture and process massive and heterogeneous data. Due to the fact that (i) advanced analyses of video streams are performed on powerful recording devices; while (ii) surveillance monitoring services require high availability levels in the way that the service must remain connected, for example, to a connection network that offers higher speed than conventional connections; and that (iii) the trust-worthy dependability of a surveillance system depends on various factors, it is not easy to identify which components/devices in a system architecture have the most impact on the dependability for a specific surveillance system in smart cities. In this paper, we developed stochastic Petri net models for a surveillance monitoring system with regard to varying several parameters to obtain the highest dependability. Two main metrics of interest in the dependability of a surveillance system including reliability and availability were analyzed in a comprehensive manner. The analysis results show that the variation in the number of long-term evolution (LTE)-based stations contributes to a number of nines (#9s) increase in availability. The obtained results show that the variation of the mean time to failure (MTTF) of surveillance cameras exposes a high impact on the reliability of the system. The findings of this work have the potential of assisting system architects in planning more optimized systems in this field based on the proposed models.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 955
Author(s):  
Vasyl Teslyuk ◽  
Andriy Sydor ◽  
Vincent Karovič ◽  
Olena Pavliuk ◽  
Iryna Kazymyra

Technical systems in the modern global world are rapidly evolving and improving. In most cases, these are large-scale multi-level systems and one of the problems that arises in the design process of such systems is to determine their reliability. Accordingly, in the paper, a mathematical model based on the Weibull distribution has been developed for determining a computer network reliability. In order to simplify calculating the reliability characteristics, the system is considered to be a hierarchical one, ramified to level 2, with bypass through the level. The developed model allows us to define the following parameters: the probability distribution of the count of working output elements, the availability function of the system, the duration of the system’s stay in each of its working states, and the duration of the system’s stay in the prescribed availability condition. The accuracy of the developed model is high. It can be used to determine the reliability parameters of the large, hierarchical, ramified systems. The research results of modelling a local area computer network are presented. In particular, we obtained the following best option for connecting workstations: 4 of them are connected to the main hub, and the rest (16) are connected to the second level hub, with a time to failure of 4818 h.


2021 ◽  
Vol 58 (2) ◽  
pp. 289-313
Author(s):  
Ruhul Ali Khan ◽  
Dhrubasish Bhattacharyya ◽  
Murari Mitra

AbstractThe performance and effectiveness of an age replacement policy can be assessed by its mean time to failure (MTTF) function. We develop shock model theory in different scenarios for classes of life distributions based on the MTTF function where the probabilities $\bar{P}_k$ of surviving the first k shocks are assumed to have discrete DMTTF, IMTTF and IDMTTF properties. The cumulative damage model of A-Hameed and Proschan [1] is studied in this context and analogous results are established. Weak convergence and moment convergence issues within the IDMTTF class of life distributions are explored. The preservation of the IDMTTF property under some basic reliability operations is also investigated. Finally we show that the intersection of IDMRL and IDMTTF classes contains the BFR family and establish results outlining the positions of various non-monotonic ageing classes in the hierarchy.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Myungwoo Son ◽  
Jaewon Jang ◽  
Yongsu Lee ◽  
Jungtae Nam ◽  
Jun Yeon Hwang ◽  
...  

AbstractHere, we demonstrate the fabrication of a Cu-graphene heterostructure interconnect by the direct synthesis of graphene on a Cu interconnect with an enhanced performance. Multilayer graphene films were synthesized on Cu interconnect patterns using a liquid benzene or pyridine source at 400 °C by atmospheric pressure chemical vapor deposition (APCVD). The graphene-capped Cu interconnects showed lower resistivity, higher breakdown current density, and improved reliability compared with those of pure Cu interconnects. In addition, an increase in the carrier density of graphene by doping drastically enhanced the reliability of the graphene-capped interconnect with a mean time to failure of >106 s at 100 °C under a continuous DC stress of 3 MA cm−2. Furthermore, the graphene-capped Cu heterostructure exhibited enhanced electrical properties and reliability even if it was a damascene-patterned structure, which indicates compatibility with practical applications such as next-generation interconnect materials in CMOS back-end-of-line (BEOL).


Sign in / Sign up

Export Citation Format

Share Document