An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method

2021 ◽  
pp. 102552
Author(s):  
Zixiang Li ◽  
Yinan Cui ◽  
Li Wang ◽  
Haoyu Zhang ◽  
Zhiyue Liang ◽  
...  
Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
Gunnar Zimmermann ◽  
Richard Chapman

Abstract Dual beam FIBSEM systems invite the use of innovative techniques to localize IC fails both electrically and physically. For electrical localization, we present a quick and reliable in-situ FIBSEM technique to deposit probe pads with very low parasitic leakage (Ipara < 4E-11A at 3V). The probe pads were Pt, deposited with ion beam assistance, on top of highly insulating SiOx, deposited with electron beam assistance. The buried plate (n-Band), p-well, wordline and bitline of a failing and a good 0.2 μm technology DRAM single cell were contacted. Both cells shared the same wordline for direct comparison of cell characteristics. Through this technique we electrically isolated the fail to a single cell by detecting leakage between the polysilicon wordline gate and the cell diffusion. For physical localization, we present a completely in-situ FIBSEM technique that combines ion milling, XeF2 staining and SEM imaging. With this technique, the electrically isolated fail was found to be a hole in the gate oxide at the bad cell.


2017 ◽  
Vol 686 ◽  
pp. 44-48 ◽  
Author(s):  
Wei Wang ◽  
Xianwei Bai ◽  
Xiangxiang Guan ◽  
Xi Shen ◽  
Yuan Yao ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Iryna Zelenina ◽  
Igor Veremchuk ◽  
Yuri Grin ◽  
Paul Simon

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4001 ◽  
Author(s):  
Shuhe Chang ◽  
Haoyu Zhang ◽  
Haiying Xu ◽  
Xinghua Sang ◽  
Li Wang ◽  
...  

In the process of electron beam freeform fabrication (EBF3), due to the continuous change of thermal conditions and variability in wire feeding in the deposition process, geometric deviations are generated in the deposition of each layer. In order to prevent the layer-by-layer accumulation of the deviation, it is necessary to perform online geometry measurement for each deposition layer, based on which the error compensation can be done for the previous deposition layer in the next deposition layer. However, the traditional three-dimensional reconstruction method that employs structured laser cannot meet the requirements of long-term stable operation in the manufacturing process of EBF3. Therefore, this paper proposes a method to measure the deposit surfaces based on the position information of electron beam speckle, in which an electron beam is used to bombard the surface of the deposit to generate the speckle. Based on the structured information of the electron beam in the vacuum chamber, the three-dimensional reconstruction of the surface of the deposited parts is realized without need of additional structured laser sensor. In order to improve the detection accuracy, the detection error is theoretically analyzed and compensated. The absolute error after compensation is smaller than 0.1 mm, and the precision can reach 0.1%, which satisfies the requirements of 3D reconstruction of the deposited parts. An online measurement system is built for the surface of deposited parts in the process of electron beam freeform fabrication, which realizes the online 3D reconstruction of the surface of the deposited layer. In addition, in order to improve the detection stability of the whole system, the image processing algorithm suitable for this scene is designed. The reliability and speed of the algorithm are improved by ROI extraction, threshold segmentation, and expansion corrosion. In addition, the speckle size information can also reflect the thermal conditions of the surface of the deposited parts. Hence, it can be used for online detection of defects such as infusion and voids.


Sign in / Sign up

Export Citation Format

Share Document