Short-duration rotational grazing leads to improvements in landscape functionality and increased perennial herbaceous plant cover

2019 ◽  
Vol 281 ◽  
pp. 134-144 ◽  
Author(s):  
Rachel Lawrence ◽  
R.D.B. Whalley ◽  
Nick Reid ◽  
Romina Rader
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinjie Wang ◽  
Yongxia Zhang ◽  
Qingquan Liu ◽  
Haiying Tong ◽  
Ting Zhang ◽  
...  

AbstractIris germanica L. is a perennial herbaceous plant that has been widely cultivated worldwide and is popular for its elegant and vibrantly colorful flowers. Selection of appropriate reference genes is the prerequisite for accurate normalization of target gene expression by quantitative real-time PCR. However, to date, the most suitable reference genes for flowering stages have not been elucidated in I. germanica. In this study, eight candidate reference genes were examined for the normalization of RT-qPCR in three I. germanica cultivars, and their stability were evaluated by four different algorithms (GeNorm, NormFinder, BestKeeper, and Ref-finder). The results revealed that IgUBC and IgGAPDH were the most stable reference genes in ‘00246’ and ‘Elizabeth’, and IgTUB and IgUBC showed stable expression in ‘2010200’. IgUBC and IgGAPDH were the most stable in all samples, while IgUBQ showed the least stability. Finally, to validate the reliability of the selected reference genes, the expression patterns of IgFT (Flowering Locus T gene) was analyzed and emphasized the importance of appropriate reference gene selection. This work presented the first systematic study of reference genes selection during flower bud development and provided guidance to research of the molecular mechanisms of flowering stages in I. germanica.


Author(s):  
Mariya Aleksandrovna Okach ◽  
Svetlana Valer'evna Mukhametova ◽  
Kseniya Valentinovna Kharisova ◽  
Anastasiya Sergeevna Polkanova ◽  
Gul'nara Il'darovna Yakupova

Daylily (Hemerocallis) is a perennial herbaceous plant widely used in landscape gardening. Daylilies are prized for their long term flowering mainly in late summer and low maintenance cultivation. According to flower spike height, the varieties are divided into runt, medium-growing and tall. The article contains the results of the study of 21 medium-growing daylily varieties’ terms of flowering in the botanic garden of the Volga region State University of Technology (Yoshkar-Ola, the Republic of Mari El). The research was conducted in 2015 - 2017. The calendar dates were converted into a continuous series. All varieties were classified as early, medium or late according to the terms of the beginning and the end of flowering and its duration. During three years of research, the earliest beginning of the phenological phase was registered in 2016, and the latest one  - in 2017. The early beginning and ending of flowering were typical for the varieties “Dr Regel” and “Royal Sovereign”. The late beginning of flowering was registered for the “Country Club” variety, and the late ending - for “Sandalwood”. Other varieties were classified as medium-term. The varieties “Royal Sovereign”, “Tejas”, and “Sugar Candy” are characterized by a short flowering period, while “Sandalwood” and “Derby Bound” - with a long one. It was established that the late-flowering varieties are characterized with a longer flowering period.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Wendy J. Leonard ◽  
O. W. Van Auken

Abstract In the past, grasslands and savannas were common in many areas of south-central Texas, including the San Antonio area. With the advent of European settlers and their livestock, much of this area was converted to agriculture and rangeland. Today, most of San Antonio is developed, but some preservation has occurred. Restored grassland, mechanically cleared of Juniperus ashei (juniper, Ashe juniper) and other woody species in 2013, was examined and compared to adjacent non-cleared woodland. The woodland examined was dominated by Diospyros texana (Texas persimmon) and Juniperus ashei. Richness in the woodland canopy was 15 species. The understory below the canopy had 25 woody species. In the restored grassland area, herbaceous plant cover was 41.8%, woody plant cover 5.8%, bare soil 2.9%, and litter cover 49.5%. Species richness was 71, with 60 herbaceous and 11 woody species (percent cover of each from <0.1–7.1%). The most common species in the restored grassland in descending order were Nassella leucotricha (Texas winter grass), Calyptocarpus vialis (straggler daisy), Carex planostachys (cedar sedge), Sporobolus crypandrus (sand dropseed), D. texana, and Verbesina virginica (frost weed). Several C4 grass species were present with low cover but may increase in abundance over time. Four of the six most common restored grassland species were present below the woodland canopy and 12 woody species were present in the restored grassland as juveniles. Cost of restoration was approximately $38,500 ($7,500 supplies, $31,000 labor).


2021 ◽  
Author(s):  
Rubén Forján Castro ◽  
Diego Baragaño Coto ◽  
Daniel Arenas Lago ◽  
José Luis Rodríguez Gallego ◽  
Erika Silva Santos

<p>In active mines areas without environmental management plans or abandoned mines, the mineral processing and mining-waste disposal are common sources of pollution that can affect large areas comprising soils and waters. Inevitably this situation leads to a degradation of plant cover whether natural or planted. Thus, a sustainable recovery of mine tailings and contaminated soils, located inside or surrounding the mine area is necessary, especially with innovative strategies for in situ elements stabilization. Within different stabilization options, nanoremediation, i.e. amending with nanomaterials (usually Fe-based nanoparticles) alone or combined with other amendments, is an interesting approach. Most of the studies are focused on the immobilization of metal(oid)s by nanoparticles, however only a few works assess the effects of these amendments on contaminated soils on their microbiology and plants. For these reasons, the main scope of this study was the assessment of some biological indicators, namely several enzymatic activities in soils and plant development, of a contaminated mine soil amended with two different types of commercial nanoparticles (iron nanoparticles nZVI and hydroxyapatite nanoparticles) and their combinations with biochar (by PYREG Carbon Technology Solutions, was made from wood following the PYREG® methodology). The studied soil belongs to a broad mining area in NW Spain and it revealed high total concentrations of Cu and As (5000 and 300 mg/kg, respectively). The mine soil was amended in a factorial experiment in pots assay, under controlled conditions in greenhouse, with iron nanoparticles (nZVI), hydroxyapatite nanoparticles (nHP), biochar, and the combination of nZVI+biochar and nHP+biochar. In these pots was sown a commercial mixture of herbaceous plant species for pasture being monitored for 45 days. Plant cover was determined and once this assay time had elapsed, four enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase and urease) of the soil and biomass weight was analyzed.</p><p>Only rye grass germinated. Same result was verified in the pot assay and independently of treatment. Plant cover in all treatments was similar reaching more than 80 %, however dry plant biomass varied. Notable differences were observed in the enzymatic activity among the soil amended only with nanoparticles, the soil amended with the combination of nanoparticles and biochar or biochar alone. In general, the application of studied amendments, alone or combined and compared to the control, increased the functioning of the overall microbial community and microbial communities associated to C and N cycling. The soil amended with biochar and biochar combined with nanoparticles presented a greater enzymatic activities in the soil compared to the direct application of nanoparticles. A differentiation in the some enzymatic activities (e.g. dehydrogenase and urease) with the nanoparticles type was verified.</p><p> </p><p><strong>Acknowledgment: </strong>This work was supported by the research project NANOCAREM MCI-20-PID2019-106939GB-I00 (AEI/FEDER, UE) and Portuguese funds through Fundação para a Ciência e Tecnologia within the scope of the project UID/AGR/04129/2020 (LEAF). The authors thanks the grants: Arenas-Lago D. (postdoc contract ED481D 2019/007) and Baragaño D. (Formación del Profesorado Universitario program) financed by of Xunta de Galicia and Universidade de Vigo and Ministerio de Educación, Cultura y Deporte de España, respectively.</p><p> </p>


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Robert E. Meyer ◽  
Rodney W. Bovey

Chlorsulfuron and metsulfuron were effective on Texas whitebrush, killing 70 to 75% of the plants at 0.28 kg ai ha, marginally effective on Macartney rose, killing 15 to 43% of the plants at 1.12 kg ha, but ineffective on honey mesquite and huisache, killing no more than 10% of the plants at 1.12 kg ha. Sulfometuron was ineffective on all woody species at 1.12 kg ai ha. Clopyralid and picloram were effective, killing 70 to 92% of the huisache at 2.24 kg ae ha. Tebuthiuron killed 72% of the Texas whitebrush at 1.12 kg ai ha. Sulfometuron generally reduced herbaceous plant cover the year of application. Chlorsulfuron and metsulfuron often resulted in increased grass cover the year of application. Most herbicides reduced broadleaf weeds the year of application. Woolly croton often was the first prominent broadleaf species to return to areas treated with clopyralid and sulfometuron. Few differences occurred among herbicides in herbaceous weed cover the year following treatment.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 139-139 ◽  
Author(s):  
J. M. You ◽  
X. M. Lin ◽  
J. Guo ◽  
M. D. Zhang ◽  
C. L. Liao ◽  
...  

Atractylodes macrocephala is a perennial herbaceous plant (family Asteraceae) native to China. The biennial root, Largehead Atractylodes Rhizome (LAR), is the most commonly used Chinese herbal medicine to prevent early pregnancy loss due to miscarriage. From summer 2010 to spring 2012, symptoms of root rot were observed on LAR in Xianfeng county, Enshi city, Hubei Province, China. White mold on the root of LAR could be observed at an early growth stage in the field and the white mold spread over the entire plant after 10 days, which differs from root rot of LAR caused by Fusarium oxysporum and Rhizoctonia solani, neither of which are characterized as having mycelium spreading over the whole plant (4). Where root rot symptoms were present, rhizome yield was reduced by 15% on average, with up to 40% yield loss in some fields. Under humid conditions in mid-June, the disease in the field spread quickly and the rhizomes of LAR were completely rotted. After rainfall and increasing temperature from 16 to 35°C, white mycelium appeared and plants withered within a few weeks. In April 2011 and 2012, a fungus was consistently recovered from symptomatic rhizome samples after they were surface sterilized with 0.1% mercuric chloride solution and plated onto potato dextrose agar (PDA). Pale gray colonies with short aerial mycelia and brown sclerotia formed on PDA after 7 days incubation at 28°C. Binucleate cells were observed using light microscopy and the characteristics were matched with morphological characteristics of a Ceratobasidium sp (3). Genomic DNA of the culture was extracted, and the rDNA-internal transcribed spacer sequence (GenBank Accession No. JQ926741) showed 99% identity to Ceratobasidium sp (GenBank No. H269825.1). Mycelial plugs of the culture taken from PDA were inoculated onto 40 rhizomes of 1-year-old seedlings and plants were incubated with a 16-h photoperiod at 28°C and 90% relative humidity in an artificial climate chamber where they developed typical disease symptoms after 2 days. Ten rhizomes of 1-year-old seedlings and were treated with PDA plugs only. All seedlings inoculated with the pathogen were withered and the rhizomes were completely covered with gray mycelium 2 days after inoculation, which was similar to the symptoms observed in the field. After 7 days, the symptoms were more severe than those observed in the field, with seedlings rotted completely. The main stalk of all inoculated plants was covered with gray mycelia in 4 days, and the stalk became withered, which was similar to the symptoms observed in the field. No symptoms were observed on control seedlings and plants. Koch's postulates were fulfilled by successful reisolation of Ceratobasidium sp. from diseased seedlings. The pathogenicity tests were carried out twice. Ceratobasidium sp. has been reported to cause root rot of canola in Washington (2). It has also been observed on Rehmannia in China (1). To our knowledge, this is the first report of Ceratobasidium sp. causing root rot on LAR. References: (1) B. B. Chen et al. Chin. J. Chin. Material Medica (In Chinese) 9:1137, 2011. (2) K. L. Schroeder et al. Plant Dis. 96:591, 2012. (3) B. Sneh et al. Page 39 in: Identification of Rhizoctonia Species. The American Phytopathological Society, 1991. (4) S. X. Zang et al. J. Agric. Univ. Hebei (In Chinese) 28:73, 2005.


2005 ◽  
Vol 35 (2) ◽  
pp. 461-471 ◽  
Author(s):  
H SJ Kearns ◽  
W R Jacobi

Thirty discrete black stain root disease (BSRD) mortality centers, caused by Leptographium wageneri (Kendr.) Wingf. var. wageneri, were examined in 1999 to determine the effects of BSRD on the composition and structure of piñon–juniper woodlands at the tree, shrub, and herbaceous plant levels and on tree-seedling regeneration. In these recently formed mortality centers, the majority (68%) of all piñon (Pinus edulis Engelm.) was dead, 76% of piñon were affected by BSRD, and 70% had evidence of piñon ips bark beetle (Ips confusus Leconte) attack. BSRD mortality centers had a mean area of 0.28 ha (range 0.07 to 0.63 ha). There were no statistically significant (p > 0.05) differences in shrub composition, cover, or diversity between mortality centers and the unaffected surrounding woodlands. Herbaceous plant cover was significantly greater (p < 0.001) within mortality centers and frequency responses were species specific. There were no significant (p = 0.629) differences in the density of piñon regeneration inside mortality centers compared with outside mortality centers. The pathogen was regularly isolated from piñon roots dead for 5–8 years and once from a root dead for 16 years. The rate of radial expansion of mortality centers averaged 1.1 m/year (0.07 SE). The rate of mortality center expansion was not significantly (p > 0.05) related to available water-holding capacity, percent organic matter, pH of soils, piñon density, or any other site data recorded.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 690-690
Author(s):  
Q.-L. Li ◽  
S.-P. Huang ◽  
T.-X. Guo ◽  
Z.-B. Pan ◽  
J.-Y. Mo ◽  
...  

Baphicacanthus cusia is a perennial herbaceous plant in the family Acanthaceae that is native to China, where it grows in warm temperate mountainous or hilly regions. It is commonly used as a Chinese herbal medicine. In March 2012, symptoms of leaf spot were observed on leaves of B. cusia in Long'an County, Guangxi, China, where this plant is extensively cultivated. Symptoms were initially small brown dots which developed into irregular to circular leaf spots. These spots enlarged and overlapped, extending until the 7- to 9-cm-long and 3- to 4-cm-wide leaves withered entirely, mostly within 2 months. On potato dextrose agar (PDA), the same fungus was cultured from 92% of 75 symptomatic leaf samples that had been surface sterilized in a 45-second dip in 0.1% mercuric chloride. Fungal structures were observed on diseased leaves: conidiophores (85 to 460 × 4 to 8 μm) were erect, brown, single or in clusters, and conidia (36 to 90 × 5 to 16 μm) were single or in chains of two to four, brown, cylindrical or obclavate, straight or slightly curved, with 3 to 18 pseudosepta and a conspicuous hilum. Three single-spore isolates were identified as Corynespora cassiicola (Berk & Curt.) Wei based on morphological and cultural characteristics (1). The rDNA internal transcribed spacer (ITS) region of one isolate, ZY-1, was sequenced (GenBank Accession No. JX908713), and it showed 100% identity to C. cassiicola, GenBank FJ852716, an isolate from Micronesia cultured from Ipomoea batatas (2). Pathogenicity tests were performed with each of the three isolates by spraying conidial suspensions (5 × 104 conidia/ml) containing 0.1% Tween 20 onto the surfaces of leaves of 60-day-old, 20-cm tall plants. For each isolate, 30 leaves from five replicate plants were treated. Control plants were treated with sterilized water containing 0.1% Tween 20. All plants were incubated for 36 h at 25°C and 90% relative humidity in an artificial climate chamber, and then moved into a greenhouse. Seven days after inoculation, dark brown spots typical of field symptoms were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of C. cassiicola from diseased leaves. To our knowledge, this is the first report of C. cassiicola infecting B. cusia worldwide. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, England, 1971. (2) L. J. Dixon et al. Phytopathology 99:1015, 2009.


2020 ◽  
Author(s):  
Ni Wayan Deswiniyanti ◽  
Ni Kadek Dwipayani Lestari

Lily (Lilium longiflorum) is a perennial herbaceous plant with white trumpet-shaped flowers, fragrant and bulbous. In vitro culture through bulbs is one of way propagation of lily plants, but it requires a long time and only produces limited plants. In vitro propagation is a very promising technique for plant propagation because it can produce a lot of plant seeds in a short time. Bulbs are one of the fastest explants for growing shoots in lilies, but it is not known for certain which cuts of explants from bulb scales are best for multiplying in vitro. This study aims to determine the effect of lily bulb explants and the concentration of NAA and BAP growth regulators on the growth of lily bulb explants. The best results were obtained on the base and middle cuts explant of bulb scales compared to the tip cuts explant ones. The best results of the growing percentage, the number of shoots and the best growing time are shown in the combination treatment of growth regulator 1 mg L−1 NAA and 1 mg L−1 BAP. The optimum results on the number of micro bulbs were found in the treatment of growth regulators 0.5 mg L−1 NAA and 1 mg L−1 BAP. The best results of the average time formed micro bulb was in the treatment of 1 mg L−1 NAA and BAP with middle explant cuts, and treatment concentrations of 0.5 mg L−1 NAA and BAP in the base explant section. The base and middle bulb explants are able to regenerate or grow higher shoots. This is caused by the presence of endogenous natural auxin and the spread of auxin in plant parts not in the same amount. Therefore when added to the exogenous growth regulator such as auxin or cytokines to culture media will further trigger the formation of micro tubers more quickly,. It can increase the concentration of endogenous growth regulators in cells, help growing process and developing tissue.   Keywords: Bulb, lily, micro bulbs, in vitro, shoots


Sign in / Sign up

Export Citation Format

Share Document