scholarly journals Selection and validation of appropriate reference genes for RT-qPCR analysis of flowering stages and different genotypes of Iris germanica L

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinjie Wang ◽  
Yongxia Zhang ◽  
Qingquan Liu ◽  
Haiying Tong ◽  
Ting Zhang ◽  
...  

AbstractIris germanica L. is a perennial herbaceous plant that has been widely cultivated worldwide and is popular for its elegant and vibrantly colorful flowers. Selection of appropriate reference genes is the prerequisite for accurate normalization of target gene expression by quantitative real-time PCR. However, to date, the most suitable reference genes for flowering stages have not been elucidated in I. germanica. In this study, eight candidate reference genes were examined for the normalization of RT-qPCR in three I. germanica cultivars, and their stability were evaluated by four different algorithms (GeNorm, NormFinder, BestKeeper, and Ref-finder). The results revealed that IgUBC and IgGAPDH were the most stable reference genes in ‘00246’ and ‘Elizabeth’, and IgTUB and IgUBC showed stable expression in ‘2010200’. IgUBC and IgGAPDH were the most stable in all samples, while IgUBQ showed the least stability. Finally, to validate the reliability of the selected reference genes, the expression patterns of IgFT (Flowering Locus T gene) was analyzed and emphasized the importance of appropriate reference gene selection. This work presented the first systematic study of reference genes selection during flower bud development and provided guidance to research of the molecular mechanisms of flowering stages in I. germanica.

2021 ◽  
Author(s):  
Yinjie Wang ◽  
Yongxia Zhang ◽  
Qingquan Liu ◽  
Haiying Tong ◽  
Ting Zhang ◽  
...  

Abstract Iris germanica L. is a perennial herbaceous plant that has been widely cultivated worldwide and is popular for its elegant and vibrantly colorful flowers. Selection of appropriate reference genes is the prerequisite for accurate normalization of target gene expression by quantitative real-time PCR. However, to date, the most suitable reference genes for flowering stages have not been elucidated in I. germanica. In this study, eight candidate reference genes were examined for the normalization of qRT-PCR in three I. germanica cultivars, and their stability were evaluated by four different algorithms (GeNorm, NormFinder, BestKeeper, and Ref-finder). The results revealed that IgUBC and IgGAPDH were the most stable reference genes in ‘00246’ and ‘Elizabeth’, and IgTUB and IgUBC showed stable expression in ‘2010200’. IgUBC and IgGAPDH were the most stable in all samples, while IgUBQ showed the least stability. Finally, to validate the reliability of the selected reference genes, the expression patterns of IgFT (Flowering Locus T gene) was analyzed and emphasized the importance of appropriate reference gene selection. This work presented the first systematic study of reference genes selection during flower bud development and provided guidance to research of the molecular mechanisms of flowering stages in I. germanica.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min-dong Chen ◽  
Bin Wang ◽  
Yong-ping Li ◽  
Mei-juan Zeng ◽  
Jian-ting Liu ◽  
...  

AbstractSelecting suitable internal reference genes is an important prerequisite for the application of quantitative real-time PCR (qRT-PCR). However, no systematic studies have been conducted on reference genes in luffa. In this study, seven reference genes were selected, and their expression levels in luffa plants exposed to various simulated abiotic stresses [i.e., cold, drought, heat, salt, H2O2, and abscisic acid (ABA) treatments] were analyzed by qRT-PCR. The stability of the reference gene expression levels was validated using the geNorm, NormFinder, BestKeeper, and RefFinder algorithms. The results indicated that EF-1α was the most stably expressed and suitable reference gene overall and for the heat, cold, and ABA treatments. Additionally, UBQ expression was stable following the salt treatment, whereas TUB was identified as a suitable reference gene for H2O2 and drought treatments. The reliability of the selected reference genes was verified by analyzing the expression of copper/zinc superoxide dismutase (Cu/Zn-SOD) gene in luffa. When the most unstable reference genes were used for data normalizations, the resulting expression patterns had obvious biases when compared with the expression patterns for the most ideal reference genes used alone or combined. These results will be conducive to more accurate quantification of gene expression levels in luffa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 459
Author(s):  
Zeying Zhao ◽  
Hanwen Zhou ◽  
Zhongnan Nie ◽  
Xuekui Wang ◽  
Biaobiao Luo ◽  
...  

Anemone flaccida Fr. Schmidt is a traditional medicinal herb in southwestern China and has multiple pharmacological effects on bruise injuries and rheumatoid arthritis (RA). A new drug with a good curative effect on RA has recently been developed from the extract of A. flaccida rhizomes, of which the main medicinal ingredients are triterpenoid saponins. Due to excessive exploitation, the wild population has been scarce and endangered in a few of its natural habitats and research on the cultivation of the plant commenced. Studies on the gene expressions related to the biosynthesis of triterpenoid saponins are not only helpful for understanding the effects of environmental factors on the medicinal ingredient accumulations but also necessary for monitoring the herb quality of the cultivated plants. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) as a sensitive and powerful technique has been widely used to detect gene expression across tissues in plants at different stages; however, its accuracy and reliability depend largely on the reference gene selection. In this study, the expressions of 10 candidate reference genes were evaluated in various organs of the wild and cultivated plants at different stages, using the algorithms of geNorm, NormFinder and BestKeeper, respectively. The purpose of this study was to identify the suitable reference genes for RT-qPCR detection in A. flaccida. The results showed that two reference genes were sufficient for RT-qPCR data normalization in A. flaccida. PUBQ and ETIF1a can be used as suitable reference genes in most organs at various stages because of their expression stabilitywhereas the PUBQ and EF1Α genes were desirable in the rhizomes of the plant at the vegetative stage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Madhab Kumar Sen ◽  
Kateřina Hamouzová ◽  
Pavlina Košnarová ◽  
Amit Roy ◽  
Josef Soukup

AbstractBromus sterilis is an annual weedy grass, causing high yield losses in winter cereals. Frequent use of herbicides had led to the evolution of herbicide resistance in this species. Mechanisms underlying herbicide resistance in B. sterilis must be uncovered because this problem is becoming a global threat. qRT-PCR and the next-generation sequencing technologies can elucidate the resistance mechanisms. Although qRT-PCR can calculate precise fold changes, its preciseness depends on the expression of reference genes. Regardless of stable expression in any given condition, no gene can act as a universal reference gene. Hence, it is necessary to identify the suitable reference gene for each species. To our knowledge, there are no reports on the suitable reference gene in any brome species so far. Thus, in this paper, the stability of eight genes was evaluated using qRT-PCR experiments followed by expression stability ranking via five most commonly used software for reference gene selection. Our findings suggest using a combination of 18S rRNA and ACCase to normalise the qRT-PCR data in B. sterilis. Besides, reference genes are also recommended for different experimental conditions. The present study outcomes will facilitate future molecular work in B. sterilis and other related grass species.


2018 ◽  
Vol 20 (1) ◽  
pp. 34 ◽  
Author(s):  
Jing-Jing Wang ◽  
Shuo Han ◽  
Weilun Yin ◽  
Xinli Xia ◽  
Chao Liu

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes for normalizing target gene expression is important for verifying expression changes. Metasequoia is a high-quality and economically important wood species. However, few systematic studies have examined reference genes in Metasequoia. Here, the expression stability of 14 candidate reference genes in different tissues and following different hormone treatments were analyzed using six algorithms. Candidate reference genes were used to normalize the expression pattern of FLOWERING LOCUS T and pyrabactin resistance-like 8. Analysis using the GrayNorm algorithm showed that ACT2 (Actin 2), HIS (histone superfamily protein H3) and TATA (TATA binding protein) were stably expressed in different tissues. ACT2, EF1α (elongation factor-1 alpha) and HIS were optimal for leaves treated with the flowering induction hormone solution, while Cpn60β (60-kDa chaperonin β-subunit), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and HIS were the best reference genes for treated buds. EF1α, HIS and TATA were useful reference genes for accurate normalization in abscisic acid-response signaling. Our results emphasize the importance of validating reference genes for qRT-PCR analysis in Metasequoia. To avoid errors, suitable reference genes should be used for different tissues and hormone treatments to increase normalization accuracy. Our study provides a foundation for reference gene normalization when analyzing gene expression in Metasequoia.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1753
Author(s):  
Ramaraj Sathasivam ◽  
Hyeon Ji Yeo ◽  
Chang Ha Park ◽  
Minsol Choi ◽  
Haejin Kwon ◽  
...  

Chelidonium majus L. is a perennial herbaceous plant that has various medicinal properties. However, the genomic information about its carotenoid biosynthesis pathway (CBP), xanthophyll biosynthesis pathway (XBP), and apocarotenoid biosynthesis pathway (ABP) genes were limited. Thus, the CBP, XBP, and ABP genes of C. majus were identified and analyzed. Among the 15 carotenoid pathway genes identified, 11 full and 4 partial open reading frames were determined. Phylogenetic analysis of these gene sequences showed higher similarity with higher plants. Through 3D structural analysis and multiple alignments, several distinct conserved motifs were identified, including dinucleotide binding motif, carotene binding motif, and aspartate or glutamate residues. Quantitative RT-PCR showed that CBP, XBP, and ABP genes were expressed in a tissue-specific manner; the highest expression levels were achieved in flowers, followed by those in leaves, roots, and stems. The HPLC analysis of the different organs showed the presence of eight different carotenoids. The highest total carotenoid content was found in leaves, followed by that in flowers, stems, and roots. This study provides information on the molecular mechanisms involved in CBP, XBP, and ABP genes, which might help optimize the carotenoid production in C. majus. The results could also be a basis of further studies on the molecular genetics and functional analysis of CBP, XBP, and ABP genes.


2021 ◽  
Vol 6 ◽  
pp. 197
Author(s):  
John C.W. Hildyard ◽  
Dominic J. Wells ◽  
Richard J. Piercy

Background: Progression through mammalian embryogenesis involves many interacting cell types and multiple differentiating cell lineages. Quantitative polymerase chain reaction (qPCR) analysis of gene expression in the developing embryo is a valuable tool for deciphering these processes, but normalisation to stably-expressed reference genes is essential for such analyses. Gene expression patterns change globally and dramatically as embryonic development proceeds, rendering identification of consistently appropriate reference genes challenging. Methods: We have investigated expression stability in mouse embryos from mid to late gestation (E11.5–E18.5), both at the whole-embryo level, and within the head and forelimb specifically, using 15 candidate reference genes (ACTB, 18S, SDHA, GAPDH, HTATSF1, CDC40, RPL13A, CSNK2A2, AP3D1, HPRT1, CYC1, EIF4A, UBC, B2M and PAK1IP1), and four complementary algorithms (geNorm, Normfinder, Bestkeeper and deltaCt). Results: Unexpectedly, all methods suggest that many genes within our candidate panel are acceptable references, though AP3D1, RPL13A and PAK1IP1 are the strongest performing genes overall. HPRT1 and B2M are conversely poor choices, and show strong developmental regulation. We further show that normalisation using our three highest-scoring references can reveal subtle patterns of developmental expression even in genes ostensibly ranked as acceptably stable (CDC40, HTATSF1). Conclusion: AP3D1, RPL13A and PAK1IP1 represent universally suitable reference genes for expression studies in the E11.5-E18.5 mouse embryo.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoli Tang ◽  
Hongyan Wang ◽  
Chuyang Shao ◽  
Hongbo Shao

Kosteletzkya virginica(L.) is a newly introduced perennial halophytic plant. Presently, reverse transcription quantitative real-time PCR (qPCR) is regarded as the best choice for analyzing gene expression and its accuracy mainly depends on the reference genes which are used for gene expression normalization. In this study, we employed qPCR to select the most stable reference gene inK. virginicawhich showed stable expression profiles under our experimental conditions. The candidate reference genes were 18S ribosomal RNA (18SrRNA),β-actin (ACT),α-tubulin (TUA), and elongation factor (EF). We tracked the gene expression profiles of the candidate genes and analyzed their stabilities through BestKeeper, geNorm, and NormFinder software programs. The results of the three programs were identical and18SrRNAwas assessed to be the most stable reference gene in this study. However,TUAwas identified to be the most unstable. Our study proved again that the traditional reference genes indeed displayed a certain degree of variations under given experimental conditions. Importantly, our research also provides guidance for selecting most suitable reference genes and lays the foundation for further studies inK. virginica.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Olawale Samuel Adeyinka ◽  
Bushra Tabassum ◽  
Idrees Ahmad Nasir ◽  
Iqra Yousaf ◽  
Imtiaz Ahmad Sajid ◽  
...  

Abstract Chilo partellus is an invasive polyphagous pest that has not been effectively managed with chemical pesticides. To select potential dsRNAs for use in an alternate control strategy, it is crucial to identify and evaluate stable reference genes for knockdown expression studies. This study evaluates the expression stability of seven candidate reference genes in C. partellus larvae fed on crude bacterially-expressed dsRNAs and purified dsRNAs at different time intervals, as well as the developmental stages and sexes. The expression stabilities of the reference genes were evaluated with different software programmes, such as BestKeeper, NormFinder, deltaCt, geNorm, and RefFinder. The overall results rank ELF as the most stably expressed reference gene when larvae were fed with crude bacteria-induced dsRNAs and purified dsRNA. However, Tubulin and HSP70 were more stable under different developmental stages and sexes. The expression levels of larvae that were fed crude bacteria-induced dsRNAs of Chitinase and Acetylcholinesterase were normalized with the four most stable reference genes (ELF, HSP70, V-ATPase and Tubulin) and the least stable reference gene (18S and HSP70) based on the geNorm algorithm. The least stable reference gene showed inconsistent knockdown expression, thereby confirming that the validation of a suitable reference gene is crucial to improve assay accuracy for dsRNA-targeted gene selection in C. partellus.


Sign in / Sign up

Export Citation Format

Share Document