The impact of water erosion on global maize and wheat productivity

2021 ◽  
Vol 322 ◽  
pp. 107655
Author(s):  
Tony W. Carr ◽  
Juraj Balkovič ◽  
Paul E. Dodds ◽  
Christian Folberth ◽  
Rastislav Skalský
Keyword(s):  
Author(s):  
Rizki Mohamed

The Tagueleft basin is geographically located in the northern edges of the Middle High Atlas, which is a geomorphological fragile area. The impact of human activity has accelerated water erosion in this mountains area. This is reflected in dynamic and unstable foothills, a decrease in forests density and degradation in the production of the land. On the other hand, land degradation due to human overexploitation of natural resources has increased land degradation in the area. The interest in the risk of erosion on the foothills in the area under study comes in the context of our contribution to clarify the role of geomatical and geomorphological approaches in explaining and identifying the mechanisms responsible for current foothills dynamism through water erosion and its negative impacts on the environment and local development. The aim of the study was to use the EPM (Erosion Potential Méthod) which is formulated by Slobodan Gavrilovic for erosion in mountainous areas and to test the reliability of its results based on fieldwork and remote sensing data. The results of the erosion assessment and its quantification by applying the coefficient (W) for the theoretical model in the area under study have shown that erosion is very important and it touches on wide areas as it appears through the domain classification of the distribution erosion in Tagueleft basin.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 257 ◽  
Author(s):  
Agata Novara ◽  
Giovanni Stallone ◽  
Artemio Cerdà ◽  
Luciano Gristina

Soil erosion has been considered a threat for semi-arid lands due to the removal of solid materials by water and wind. Although water erosion is currently considered the most important process of soil degradation, a growing interest has been drawn to the impact of soil tillage. Although numerous studies on tillage erosion have been carried out on arable land using a moldboard plow, a chisel, and a tandem disc for different crops, there are no studies on the effect of shallow tillage on soil redistribution in vineyards. The aim of this work was to evaluate the soil tillage erosion rate in a vineyard using a 13C natural abundance tracer. A strip of soil (C3-C soil) was removed, mixed with C4-C tracer, and replaced. After the installation of the strip, tillage (upslope in one inter-row and downslope in the other inter-row) was performed with a cultivator and soil was collected along the slope with an interval of 0.2 m from the C4-C strip. Soil organic carbon and δ13C were measured and the total mass of translocated soil (T) soil was calculated. The net effect of tillage after two consecutive operations (downslope and upslope tillage) was a T of 49.3 ± 4.2 kg m−1. The estimated annual erosion rate due to tillage in the studied vineyard was 9.5 ± 1.2 Mg ha−1year−1. The contribution of the soil tillage erosion rate was compared with that of water erosion in the same vineyard, and we conclude that tillage is a threat to soil degradation.


Author(s):  
Fernando Gomes de Souza ◽  
Valdinar Ferreira Melo ◽  
Wellington Farias Araújo ◽  
Thiago Henrique de Castro Araújo

Currently in Brazil, the main form of erosion is caused by the impact of raindrops on the soil surface, triggering the process of water erosion and causing serious damage to agricultural areas. This study evaluated losses of soil, water, organic carbon and nutrients in different cultures, bare soil and savanna under natural rain. The experimental design was completely randomized with five treatments (bare soil - BS, cowpea bean - CB, Brachiaria brizantha - BB, corn - CO and natural savanna – SN) with three replications; The treatment of bare soil (BS), followed by the treatment cultivated with cowpea bean  (CB) showed higher losses of soil, water, organic carbon and nutrients; The highest losses of soil, water, organic carbon and nutrients in the treatment of bare soil (BS) occurred during the period of greatest erosivity; but for treatments CB, BB and CO, the highest losses occurred during the establishment of the crop, in view of the lower soil cover. Soils cultivated with Brachiaria brizantha - BB, corn - CO and in the Natural Savana - SN area were more efficient in reducing soil and water losses during all months evaluated. Plant cover produced by the (SN) treatment and by the (BB) and (CO) treatments acted to reduce the harmful effects of erosion, minimizing losses of nutrients and organic carbon. The soil should be well protected during periods when rainfall presents the highest values of erosivity index.


Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Roberto Lázaro ◽  
Juan Mora

AbstractIn drylands, water erosion can be a process with important economic and ecological implications, and is very dependent on the soil surface cover. There is broad agreement that biocrusts protect the soil from erosion in a wide range of circumstances. However, there is little information available on the effect of rain and biocrust types on this protective capacity and there is particularly very little knowledge on the erosive effects of runoff on biocrusts, which are expected to be larger in larger drainage areas, on the resistance of biocrusts to the combined effect of raindrops plus runoff flow and on the solute mobilisation by runoff in biocrusts. To answer these questions, we performed 96 rainfall-simulation in situ factorial experiments, including two biocrust types (cyanobacteria and lichens), three rain types (42, 63 and 77 mm h−1, always 20 min rain), four plot lengths (1, 2, 3 and 4 m long) and four replicates. In each experiment, runoff volume was measured and a runoff sample was taken to determine (i) the amount of dry matter in runoff, (ii) the amount of organic matter among the dry matter, (iii) the electrical conductivity, pH and alkalinity in runoff water. The main findings were: biocrusts strongly protected soil against water erosion, even under the most erosive conditions, and the protection increased with the successional development. Biocrusts were very resistant to the impact of raindrops and also to runoff flow, although an emergent hypothesis arose: under the most erosive conditions, a threshold of erodibility could be reached at the cyanobacterial biocrust. The lichen crust also protected the soil against the removal of soil soluble substances. The development of a biocrust could change the chemical composition of the solutes in runoff.


2020 ◽  
Author(s):  
Tony W. Carr ◽  
Juraj Balkovič ◽  
Paul E. Dodds ◽  
Christian Folberth ◽  
Emil Fulajtar ◽  
...  

Abstract. Water erosion in agricultural fields can reduce soil fertility and agricultural productivity. Despite the impact of water erosion on crops, it is typically neglected in global crop yield projections. Furthermore, previous efforts to quantify global water erosion have paid little attention to the effects of field management on the magnitude of water erosion. In this study, we analyse the robustness of simulated water erosion estimates in wheat and maize fields between the years 1980 to 2010 based on daily model outputs from a global gridded version of the Environmental Policy Integrated Climate (EPIC) crop model. Using the MUSS water erosion equation and country-specific and environmental indicators determining different intensities in tillage, residue handling and cover crops, we simulate global annual median and average water erosion rates of 6 t ha−1 and 19 t ha−1 and an annual soil removal of 7 Gt in global wheat and maize fields. A comparison of our simulation results with field data demonstrates an overlap of simulated and measured water erosion values for the majority of global cropland. Slope inclination and daily precipitation are key factors in determining the agreement between simulated and measured erosion values and are the most critical input parameters controlling all water erosion equations included in EPIC. The many differences between field management methods worldwide and the varying water erosion estimates from different equations add uncertainty to the simulation results. To reduce the uncertainties addressed here and to improve global water erosion estimates generally, more data on global field management and more field data from study sites representing the diversity of environmental conditions where crops are grown are necessary.


Soil Research ◽  
1989 ◽  
Vol 27 (1) ◽  
pp. 1 ◽  
Author(s):  
AJ Moss

Impact droplets, the fine drops splashed from the impact sites of larger drops on plant elements, were investigated experimentally to assess their role in water erosion. It was found that impact droplets rarely strike the soil surface before decelerating markedly from their sometimes high initial velocities. This, and their small sizes, render them almost non-erosive. Their production therefore represents a major soil-conserving mechanism in that large, potentially erosive drops are converted to almost harmless drizzle. Conversion rates of incident-drop water to impact droplets were found to be about 10-25% by weight for large, effectively semi-infinite targets, but rose rapidly to about 90% as impact points approached within half a drop diameter of target edges. Most impacts on plant elements are edge-affected and elements of about the same diameter as a raindrop (e.g. those of fine grasses) produce double-edge effects, almost entirely converting incident drops into impact droplets. These results, combined with previous findings, allow consideration of the abilities of different arrays of plant elements (i.e. 'covers') to combat water erosion generally. Closely spaced, near-ground, plant elements, about 1-3 mm in diameter, display a peculiar overall effectiveness in this respect.


Author(s):  
Eder A. S. Sá ◽  
Ildegardis Bertol ◽  
Silvio L. Rafaeli Neto ◽  
Daiane T. Schier

ABSTRACT Water erosion is influenced by climate, soil, soil cover and soil conservation practices. These factors can be modified by natural (especially climate) and/or anthropogenic (especially soil, soil cover and conservation practices) actions. The relief factor also influences the water erosion and can also be partially modified by anthropic action. This study aimed to evaluate the impact of anthropogenic action due to the introduction of soil crop in no-tillage system on water erosion, and on the consequent flow of sediments in the water. The study was carried out in the Marombas river basin with an area of 3,939 km², using the Soil Water Assessment Tools (SWAT) model. The calibration and validation of the model for sediment production was carried out with a historical series of synthetic data. The data from this series were estimated by linear regression from sediment value load and the average daily flow obtained punctually in the basin’s outlet. The SWAT model was calibrated on a daily scale with data from 1979 to 1989 and was validated with data from 1994 and 1997. The SWAT model was suitable to represent the average daily flow and sediment flow in the Marombas watershed. The hypothesis of reduced sediment production with increasing soil crop in no-tillage system was accepted.


Author(s):  
Silvio Jose Gumiere ◽  
Jean-Stephane Bailly ◽  
Bruno Cheviron ◽  
Damien Raclot ◽  
Yves Le Bissonnais ◽  
...  

2017 ◽  
Vol 65 (4) ◽  
pp. 402-409 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
Christine Brings ◽  
Thomas Iserloh ◽  
Markus C. Casper ◽  
Manuel Seeger ◽  
...  

AbstractIt is well known that rainfall causes soil erosion in sloping German vineyards, but little is known about the effect of age of plantation on soil erosion, which is relevant to understand and design sustainable management systems. In the Ruwer-Mosel valley, young (1- to 4-years) and old (35- to 38-years after the plantation) vineyards were selected to assess soil and water losses by using two-paired Gerlach troughs over three years (2013-2015). In the young vineyard, the overland flow was 107 L m-1and soil loss 1000 g m-1in the year of the plantation, and decreased drastically over the two subsequent years (19 L m-1; 428 g m-1). In the old vineyard, soil (from 1081 g m-1to 1308 g m-1) and water (from 67 L m-1to 102 L m-1) losses were 1.2 and 1.63 times higher, respectively, than in the young vineyard.


Sign in / Sign up

Export Citation Format

Share Document