Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios

2021 ◽  
pp. 107344
Author(s):  
S. Irmak ◽  
R. Sandhu ◽  
M.S. Kukal
2013 ◽  
Vol 14 (4) ◽  
pp. 407-421 ◽  

The potential regional future changes in seasonal (winter and summer) temperature and precipitation are assessed for the greater area of Greece over the 21st century, under A2, A1B and B2 future emission scenarios of IPCC. Totally twenty-two simulations from various regional climate models (RCMs) were assessed; fourteen of them with a spatial grid resolution of 50km for the period 2071-2100 under A2 (9 simulations) and B2 (5 simulations) scenarios and eight of them with an even finer resolution of 25km under A1B scenario for both 2021-2050 and 2071-2100 time periods. The future changes in temperature and precipitation were calculated with respect to the control period (1961-1990). All the models estimated warmer and dryer conditions over the study area. The warming is more intense during the summer months, with the changes being larger in the continental than in the marine area of Greece. In terms of precipitation, the simulations of the RCMs estimate a decrease up to -60% (A2 scenario). Finally it is shown that the changes in the atmospheric circulation over Europe play a key role in the changes of the future precipitation and temperature characteristics over the domain of study in a consistent way for the different emission scenarios.


2022 ◽  
pp. 249-265
Author(s):  
Luís Quinta-Nova ◽  
Dora Ferreira

The objective of this study is to determine the suitability for the cultivation of emerging fruit crops in the Beira Baixa region. The suitability was examined for the present time and in the face of two future emission scenarios (RCP 4.5 and 8.5). For this purpose, the biophysical criteria determining the cultivation of pistachio tree and almond tree were processed using a G. The analysis was performed by the AHP. After dividing the problem into hierarchical levels of decision making, a pairwise comparison of criteria was performed to evaluate the weights of these criteria, based on a scale of importance. In the present conditions, about 16.4% of the study area is classified as highly suitable for almond tree and 15.9% to pistachio tree. For the future scenarios, the area with high suitability will increase both for almond tree and pistachio tree. The AHP was adequate in the evaluation of the emerging fruit tree species suitability, since it allowed the integration of the several criteria studied, being a useful tool, which allows the decision making and the resolution of problems.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 142 ◽  
Author(s):  
Surendra Shrestha ◽  
Puneet Dwivedi ◽  
S. McKay ◽  
David Radcliffe

This study examines the impact of projected land use changes in the context of growing production of industrial wood pellets coupled with expected changes in precipitation and temperature due to the changing climate on streamflow in a watershed located in the northeastern corner of the Oconee River Basin. We used the Soil and Water Assessment Tool (SWAT) for ascertaining any changes in streamflow over time. The developed model was calibrated over a seven-year period (2001–2007) and validated over another seven-year period (2008–2014). Any changes in streamflow were simulated for a combination of 10 land use and climate change cases, from 2015 to 2028, under the two scenarios of High and Low Demand for industrial wood pellets. Our results suggest that streamflow is relatively stable (<1% change) for land use and temperature-related cases relative to the base case of no change in land use and climate. However, changes in precipitation by ±10% lead to considerable changes (±25%) in streamflow relative to the base case. Based on our results, expected changes in precipitation due to the changing climate will determine any changes in the streamflow, rather than projected land use changes in the context of rising demand for industrial wood pellets for export purposes in the selected watershed, keeping land under urban areas as constant. This study contributes to our broader understanding of the sustainability of the transatlantic industrial wood pellet trade; however, we suggest undertaking similar research at a larger spatial scale over a longer time horizon for understanding trade-offs across carbon, biodiversity, and water impacts of the transatlantic industrial wood pellet trade.


2016 ◽  
Author(s):  
Jozef M. Pacyna ◽  
Oleg Travnikov ◽  
Francesco De Simone ◽  
Ian M. Hedgecock ◽  
Kyrre Sundseth ◽  
...  

Abstract. An assessment of current and future emissions, air concentrations and atmospheric deposition of mercury world-wide are presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The artisanal and small- scale gold mining, as well as combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers are the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 % and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 tonnes. The emissions in Asian countries, particularly in China and India dominate the total emissions of Hg. The current estimate of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 tonnes per year which represent nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %) followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for 3 different scenarios with current anthriopogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future Hg pollution levels considering future emission scenarios. Projections of future changes in Hg deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease of up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best case scenario. The EU GMOS project has proved to be a very important research instrument for supporting, first the scientific justification for the Minamata Convention, and then monitoring of the implementation of targets of this Convention, as well as, the EU Mercury Strategy. This project provided the state-of-the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric Hg on global and regional scale, and source – receptor techniques for Hg emission apportionment on a global scale.


1996 ◽  
Vol 30 (4) ◽  
pp. 667-672 ◽  
Author(s):  
W.G. Ellis ◽  
A.M. Thompson ◽  
S. Kondragunta ◽  
K.E. Pickering ◽  
G. Stenchikov ◽  
...  

2016 ◽  
Vol 16 (19) ◽  
pp. 12495-12511 ◽  
Author(s):  
Jozef M. Pacyna ◽  
Oleg Travnikov ◽  
Francesco De Simone ◽  
Ian M. Hedgecock ◽  
Kyrre Sundseth ◽  
...  

Abstract. An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year−1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important research instrument for supporting the scientific justification for the Minamata Convention and monitoring of the implementation of targets of this convention, as well as the EU Mercury Strategy. This project provided the state of the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric mercury on a global and regional scale, and source–receptor techniques for mercury emission apportionment on a global scale.


2013 ◽  
Vol 26 (11) ◽  
pp. 3511-3527 ◽  
Author(s):  
Sanjiv Kumar ◽  
James Kinter ◽  
Paul A. Dirmeyer ◽  
Zaitao Pan ◽  
Jennifer Adams

Abstract The ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models to simulate the twentieth-century “warming hole” over North America is explored, along with the warming hole’s relationship with natural climate variability. Twenty-first-century warming hole projections are also examined for two future emission scenarios, the 8.5 and 4.5 W m−2 representative concentration pathways (RCP8.5 and RCP4.5). Simulations from 22 CMIP5 climate models were analyzed, including all their ensemble members, for a total of 192 climate realizations. A nonparametric trend detection method was employed, and an alternative perspective emphasizing trend variability. Observations show multidecadal variability in the sign and magnitude of the trend, where the twentieth-century temperature trend over the eastern United States appears to be associated with low-frequency (multidecadal) variability in the North Atlantic temperatures. Most CMIP5 climate models simulate significantly lower “relative power” in the North Atlantic multidecadal oscillations than observed. Models that have relatively higher skill in simulating the North Atlantic multidecadal oscillation also are more likely to reproduce the warming hole. It was also found that the trend variability envelope simulated by multiple CMIP5 climate models brackets the observed warming hole. Based on the multimodel analysis, it is found that in the twenty-first-century climate simulations the presence or absence of the warming hole depends on future emission scenarios; the RCP8.5 scenario indicates a disappearance of the warming hole, whereas the RCP4.5 scenario shows some chance (10%–20%) of the warming hole’s reappearance in the latter half of the twenty-first century, consistent with CO2 stabilization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chengzheng Yu ◽  
Ruiqing Miao ◽  
Madhu Khanna

AbstractWe quantify long-run adaptation of U.S. corn and soybean yields to changes in temperature and precipitation over 1951–2017. Results show that although the two crops became more heat- and drought-tolerant, their productivity under normal temperature and precipitation conditions decreased. Over 1951–2017, heat- and drought-tolerance increased corn and soybean yields by 33% and 20%, whereas maladaptation to normal conditions reduced yields by 41% and 87%, respectively, with large spatial variations in effects. Changes in climate are projected to reduce average corn and soybean yields by 39–68% and 86–92%, respectively, by 2050 relative to 2013–2017 depending on the warming scenario. After incorporating estimated effects of climate-neutral technological advances, the net change in yield ranges from (−)13 to 62% for corn and (−)57 to (−)26% for soybeans in 2050 relative to 2013–2017. Our analysis uncovers the inherent trade-offs and limitations of existing approaches to crop adaptation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David C. Lafferty ◽  
Ryan L. Sriver ◽  
Iman Haqiqi ◽  
Thomas W. Hertel ◽  
Klaus Keller ◽  
...  

AbstractEfforts to understand and quantify how a changing climate can impact agriculture often rely on bias-corrected and downscaled climate information, making it important to quantify potential biases of this approach. Here, we use a multi-model ensemble of statistically bias-corrected and downscaled climate models, as well as the corresponding parent models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), to drive a statistical panel model of U.S. maize yields that incorporates season-wide measures of temperature and precipitation. We analyze uncertainty in annual yield hindcasts, finding that the CMIP5 models considerably overestimate historical yield variability while the bias-corrected and downscaled versions underestimate the largest weather-induced yield declines. We also find large differences in projected yields and other decision-relevant metrics throughout this century, leaving stakeholders with modeling choices that require navigating trade-offs in resolution, historical accuracy, and projection confidence.


Sign in / Sign up

Export Citation Format

Share Document