scholarly journals Maladaptation of U.S. corn and soybeans to a changing climate

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chengzheng Yu ◽  
Ruiqing Miao ◽  
Madhu Khanna

AbstractWe quantify long-run adaptation of U.S. corn and soybean yields to changes in temperature and precipitation over 1951–2017. Results show that although the two crops became more heat- and drought-tolerant, their productivity under normal temperature and precipitation conditions decreased. Over 1951–2017, heat- and drought-tolerance increased corn and soybean yields by 33% and 20%, whereas maladaptation to normal conditions reduced yields by 41% and 87%, respectively, with large spatial variations in effects. Changes in climate are projected to reduce average corn and soybean yields by 39–68% and 86–92%, respectively, by 2050 relative to 2013–2017 depending on the warming scenario. After incorporating estimated effects of climate-neutral technological advances, the net change in yield ranges from (−)13 to 62% for corn and (−)57 to (−)26% for soybeans in 2050 relative to 2013–2017. Our analysis uncovers the inherent trade-offs and limitations of existing approaches to crop adaptation.

2019 ◽  
Vol 45 (3) ◽  
pp. 419 ◽  
Author(s):  
Hai-Yan ZHANG ◽  
Bei-Tao XIE ◽  
Bao-Qing WANG ◽  
Shun-Xu DONG ◽  
Wen-Xue DUAN ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Priyanka Dwivedi ◽  
Naleeni Ramawat ◽  
Gaurav Dhawan ◽  
Subbaiyan Gopala Krishnan ◽  
Kunnummal Kurungara Vinod ◽  
...  

Reproductive stage drought stress (RSDS) is detrimental for rice, which affects its productivity as well as grain quality. In the present study, we introgressed two major quantitative trait loci (QTLs), namely, qDTY2.1 and qDTY3.1, governing RSDS tolerance in a popular high yielding non-aromatic rice cultivar, Pusa 44, through marker-assisted backcross breeding (MABB). Pusa 44 is highly sensitive to RSDS, which restricts its cultivation across drought-prone environments. Foreground selection was carried out using markers, RM520 for qDTY3.1 and RM 521 for qDTY2.1. Background selection was achieved with 97 polymorphic SSR markers in tandem with phenotypic selection to achieve faster recurrent parent genome (RPG) recovery. Three successive backcrosses followed by three selfings aided RPG recoveries of 98.6% to 99.4% among 31 near isogenic lines (NILs). Fourteen NILs were found to be significantly superior in yield and grain quality under RSDS with higher drought tolerance efficiency (DTE) than Pusa 44. Among these, the evaluation of two promising NILs in the multilocational trial during Kharif 2019 showed that they were significantly superior to Pusa 44 under reproductive stage drought stress, while performing on par with Pusa 44 under normal irrigated conditions. These di-QTL pyramided drought-tolerant NILs are in the final stages of testing the All India Coordinated Rice Improvement Project varietal trials for cultivar release. Alternately, the elite drought-tolerant Pusa 44 NILs will serve as an invaluable source of drought tolerance in rice improvement.


Evolution ◽  
2012 ◽  
Vol 66 (12) ◽  
pp. 3803-3814 ◽  
Author(s):  
Liz Koziol ◽  
Loren H. Rieseberg ◽  
Nolan Kane ◽  
James D. Bever
Keyword(s):  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


2020 ◽  
pp. 1-22
Author(s):  
Wolney da Cunha SOARES JÚNIOR

Many governments have implemented a controlled off-label use of medicines as a tool combined with reimbursement decisions, among other policies, to avoid pharmaceutical firms gaming regulatory systems based on the requirement for marketing authorisation. This article aims to compare the drug regulations in selected European Union countries (France, Italy and Germany) in order to identify specific provisions and concrete solutions implemented by them regarding that matter. The employment of an economic analysis of the law as a theoretical framework allows for the identification of the incentives created in the long run by the referred regulations. The scholarly literature identifies a myriad of drawbacks and advantages associated with off-label practices, and a welfare analysis is ambiguous. Off-label practices are a reality; thus, it is advisable to elaborate policy measures in order to address these practices and condition them on some requirements, taking into account that off-label practices imply trade-offs among access to healthcare, protection of public health, competitiveness and innovation in the industry.


2008 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
J. A. Wrather ◽  
J. G. Shannon ◽  
T. E. Carter ◽  
J. P. Bond ◽  
J. C. Rupe ◽  
...  

Charcoal rot caused by Macrophomina phaseolina is a common disease of many crops including common bean and soybean. Incidence and severity of charcoal rot are enhanced when plants are drought stressed. Resistance to this pathogen in some common bean genotypes was associated with drought tolerance. Resistance to M. phaseolina among soybean genotypes has not been identified, although a few have been rated moderately resistant based on less root tissue colonization by this pathogen compared to other genotypes. A few soybean genotypes have been rated as slow-wilt or drought-tolerant. The reaction of drought-tolerant soybean to M. phaseolina compared to intolerant or drought-sensitive genotypes has not been determined. Our objective was to determine if there were differences in root colonization by M. phaseolina between drought-tolerant and drought-sensitive soybean genotypes. Drought tolerance of the soybean genotypes and root colonization by M. phaseolina at the R6 and R8 stages of growth were not related in this study. Some drought-tolerant soybean genotypes may resist root colonization by M. phaseolina, but our results suggest that this is not true for all drought-tolerant genotypes. Accepted for publication 21 March 2008. Published 18 June 2008.


2017 ◽  
Vol 9 (2) ◽  
pp. 18 ◽  
Author(s):  
Csilla Deák ◽  
Katalin Jäger ◽  
Veronika Anna Nagy ◽  
Réka Oszlányi ◽  
Beáta Barnabás ◽  
...  

Four bread wheat genotypes with contrasting drought stress tolerance were studied. Expression levels of dehydrin (Wdhn13) and C-repeat binding factor (Cbf14, Cbf15) genes were investigated in leaves of two drought tolerant (Plainsman V, Mv Emese) and two sensitive (GK Élet, Cappelle Desprez) cultivars by semi-quantitative RT-PCR during drought treatment at anthesis. Coordinate induction of Cbf14, Cbf15 and Wdhn13 genes occurred at a late stage of stress treatment in all cultivars except the most sensitive Cappelle Desprez, where no induction was evident. The most pronounced late induction of genes was observed in the tolerant Mv Emese genotype. Cbf14, Cbf15 and Wdhn13 showed largely parallel changes of expression in stressed adult plants. The mRNA level of the same set of genes was measured in leaves of non-stressed seedlings with qRT-PCR method. Expression level of Wdhn13 was high and low in seedlings of tolerant and sensitive cultivars, respectively. Cbf15 specific transcript was barely detectable in leaves of non-stressed seedlings. In order to shed light on any potential difference in hormone responsiveness, seedlings were subjected to ABA treatment in vitro. At low hormone concentrations (10 and 20 µM ABA) consistently weaker ABA induced root growth retardation of GK Élet was found in comparison with the other three cultivars. Results highlight pronounced and late induction of a set of defence genes and low ABA sensitivity as features appearing in drought tolerant and sensitive responses, respectively. Data is discussed in the light of multifactorial determination of the complex phenotype of drought tolerance in wheat.


Author(s):  
Sri Satya Kanaka Nagendra Jayanty ◽  
William J. Sawaya ◽  
Michael D. Johnson

Engineers, policy makers, and managers have shown increasing interest in increasing the sustainability of products over their complete lifecycles and also from the ‘cradle to grave’ or from production to the disposal of each specific product. However, a significant amount of material is disposed of in landfills rather than being reused in some form. A sizeable proportion of the products being dumped in landfills consist of packaging materials for consumable products. Technological advances in plastics, packaging, cleaning, logistics, and new environmental awareness and understanding may have altered the cost structures surrounding the lifecycle use and disposal costs of many materials and products resulting in different cost-benefit trade-offs. An explicit and well-informed economic analysis of reusing certain containers might change current practices and results in significantly less waste disposal in landfills and in less consumption of resources for manufacturing packaging materials. This work presents a method for calculating the costs associated with a complete process of implementing a system to reuse plastic containers for food products. Specifically, the different relative costs of using a container and then either disposing of it in a landfill, recycling the material, or reconditioning the container for reuse and then reusing it are compared explicitly. Specific numbers and values are calculated for the case of plastic milk bottles to demonstrate the complicated interactions and the feasibility of such a strategy.


Sign in / Sign up

Export Citation Format

Share Document