Thickness measurement of a thin hetero-oxide film with an interfacial oxide layer by X-ray photoelectron spectroscopy

2012 ◽  
Vol 258 (8) ◽  
pp. 3552-3556 ◽  
Author(s):  
Kyung Joong Kim ◽  
Seung Mi Lee ◽  
Jong Shik Jang ◽  
Mona Moret
2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


1999 ◽  
Vol 06 (06) ◽  
pp. 1053-1060 ◽  
Author(s):  
N. TABET ◽  
J. AL-SADAH ◽  
M. SALIM

X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the oxidation of (011) Ge substrates. The sample surfaces were CP4-etched, then annealed in situ, at different temperatures, for various durations. Dry and wet atmospheres were used. The oxidation rate during the early stage was increased by the presence of moisture in the atmosphere. A simple model was used to define and determine an apparent thickness of the oxide film from XPS measurements. The time dependence of the apparent thickness is consistent with a partial coverage of the surface by oxide islands. The growth kinetics of the oxide islands obeys a nearly cubic law.


2010 ◽  
Vol 490 (1-2) ◽  
pp. 613-617 ◽  
Author(s):  
Rohit Jain ◽  
Deepika Bhandari ◽  
Anil Dhawan ◽  
S.K. Sharma

2005 ◽  
Vol 20 (6) ◽  
pp. 1396-1403 ◽  
Author(s):  
C.Y. Tam ◽  
C.H. Shek

The oxidation kinetics of Cu60Zr30Ti10 bulk metallic glass and its crystalline counterpart were studied in oxygen environment over the temperature range of 573–773 K. The oxidation kinetics, measured with thermogravimetric analysis, of the metallic glass follows a linear rate law between 573 and 653 K and a parabolic rate law between 673 and 733 K. It was also found that the oxidation activation energy of metallic glass is lower than that of its crystalline counterpart. The x-ray diffraction pattern showed that the oxide layer is composed of Cu2O, CuO, ZrO2, and metallic Cu. Cu enrichment on the topmost oxide layer of the metallic glass oxidized at 573 K was revealed by x-ray photoelectron spectroscopy while there was a decrease in Cu content in the innermost oxide layer. The oxide surface morphologies observed from scanning electron microscopy showed that ZrO2 granules formed at low temperatures while whiskerlike copper oxides formed at higher temperatures.


2020 ◽  
Vol 10 (18) ◽  
pp. 6275
Author(s):  
Heng-Jui Hsu ◽  
Chia-Yu Wu ◽  
Bai-Hung Huang ◽  
Chi-Hsun Tsai ◽  
Takashi Saito ◽  
...  

In this study, an electrochemical anodizing method was applied as surface modification of the 316L biomedical stainless steel (BSS). The surface properties, microstructural characteristics, and biocompatibility responses of the anodized 316L BSS specimens were elucidated through scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, transmission electron microscopy, and in vitro cell culture assay. Analytical results revealed that the oxide layer of dichromium trioxide (Cr2O3) was formed on the modified 316L BSS specimens after the different anodization modifications. Moreover, a dual porous (micro/nanoporous) topography can also be discovered on the surface of the modified 316L BSS specimens. The microstructure of the anodized oxide layer was composed of amorphous austenite phase and nano-Cr2O3. Furthermore, in vitro cell culture assay also demonstrated that the osteoblast-like cells (MG-63) on the anodized 316L BSS specimens were completely adhered and covered as compared with the unmodified 316L BSS specimen. As a result, the anodized 316L BSS with a dual porous (micro/nanoporous) oxide layer has great potential to induce cell adhesion and promote bone formation.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3605-3610 ◽  
Author(s):  
MASAYOSHI MIZUTANI ◽  
JUN KOMOTORI ◽  
KAZUTOSHI KATAHIRA ◽  
HITOSHI OHMORI

The biocompatibility of titanium implants with different surface properties is investigated. We prepared three types of specimens, one ground by the newly developed ELID grinding system, another ground by conventional ELID grinding, and the other polished by SiO 2 powder. These surfaces were characterized and, the number of cell and cytotoxicity in in-vitro were measured. Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscope (TEM) revealed that the modified ELID system can create a significantly thick oxide layer and a diffused oxide layer, and also can control the thickness of a modified layer. The results of cell number and cytotoxicity showed that the sample ground by the modified system had the highest biocompatibility. This may have been caused by improvement of chemical properties due to a surface modified layer. The above results suggest that this newly developed ELID grinding system can create the desirable surface properties. Consequently, this system appears to offer significant future promise for use in biomaterials and other engineering components.


1995 ◽  
Vol 02 (03) ◽  
pp. 297-303 ◽  
Author(s):  
P.C. WONG ◽  
Y.S. LI ◽  
K.A.R. MITCHELL

X-ray photoelectron spectroscopy (XPS) has been used to study the interfacial chemistries of a 65-Å film prepared by depositing zirconium in an oxidizing environment onto a methane-pretreated 11-Å thick zirconium oxide film, which initially was deposited onto a gold substrate. The second metal deposition results in an outermost region composed of a mixed zirconium oxide, while below there is metallic zirconium followed by zirconium carbide and carbon on top of the first zirconium oxide film, which is itself in contact with the gold. The carbide component showed no changes on heating to 425°C, on treating with a hydrogen plasma at room temperature, or on heating the resulting film to 425°C. The oxide layers do show characteristic changes, and this also contrasts with earlier observations for a zirconium sulphide film. The zirconium carbide Zr3d 5/2 component has a binding energy of 180.6 eV.


1995 ◽  
Vol 10 (2) ◽  
pp. 302-305 ◽  
Author(s):  
Pu Sen Wang ◽  
Subhas G. Malghan ◽  
Stephen M. Hsu ◽  
Thomas N. Wittberg

Bremsstrahlung-excited Auger electron spectroscopy (AES) was used to study the oxidation kinetics of an aluminum nitride powder oxidized in air at 750, 800, 850, and 900 °C. An equation was derived to calculate the average surface oxide film thickness from the aluminum AES spectra. The oxidation of this powder was found to follow a parabolic rate law within this temperature range. The measured activation energy was 230 ± 17 kJ/mol (55 ± 4 kcal/mol). Analysis with x-ray photoelectron spectroscopy (XPS) showed that in addition to the nitride N 1s peak, there was a second N 1s peak. This peak has been observed in previous studies and can be attributed to N-O bonding either within the growing oxide film or at the Al2O3/AlN interface.


Sign in / Sign up

Export Citation Format

Share Document