Harmonizing mechanical responses of nanostructured CrN coatings via Ni additions

2021 ◽  
Vol 538 ◽  
pp. 147987 ◽  
Author(s):  
Rumana Akhter ◽  
Zhifeng Zhou ◽  
Zonghan Xie ◽  
Paul Munroe
2021 ◽  
pp. 107754632110276
Author(s):  
Jun-Jie Li ◽  
Shuo-Feng Chiu ◽  
Sheng D Chao

We have developed a general method, dubbed the split beam method, to solve Euler–Bernoulli equations for cantilever beams under multiple loading conditions. This kind of problem is, in general, a difficult inhomogeneous eigenvalue problem. The new idea is to split the original beam into two (or more) effective beams, each of which corresponds to one specific load and bears its own Young’s modulus. The mode shape of the original beam can be obtained by linearly superposing those of the effective beams. We apply the split beam method to simulating mechanical responses of an atomic force microscope probe in the “dynamical” operation mode, under which there are a stabilizing force at the positioner and a point-contact force at the tip. Compared with traditional analytical or numerical methods, the split beam method uses only a few number of basis functions from each effective beam, so a very fast convergence rate is observed in solving both the resonance frequencies and the mode shapes at the same time. Moreover, by examining the superposition coefficients, the split beam method provides a physical insight into the relative contribution of an individual load on the beam.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 446
Author(s):  
Ioannis Spanos ◽  
Zacharias Vangelatos ◽  
Costas Grigoropoulos ◽  
Maria Farsari

The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale.


2021 ◽  
Author(s):  
Jaya Murjaya ◽  
Dwikorita Karnawati ◽  
Supriyanto ◽  
Rahmat S. Yuliatmoko ◽  
Thomas Hardy ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Patrice Berthod ◽  
Lionel Aranda ◽  
Jean-Paul Gomis

Nickel is often added to cobalt-based superalloys to stabilize their austenitic structure. In this work the effects of Ni on several high temperature properties of a chromium-rich cobalt-based alloy reinforced by high fraction of TaC carbides are investigated. Different thermal analysis techniques are used: differential scanning calorimetry (DSC), thermo-mechanical analysis (TMA) and thermogravimetry (TG). Results show that the progressive addition of nickel did not induce great modifications of microstructure, refractoriness or thermal expansion. However, minor beneficial effects were noted, including reduction of the melting temperature range and slight decrease in thermal expansion coefficient. The most important improvement induced by Ni addition concerns the hot oxidation behavior. In this way, introducing several tens wt % Ni in this type of cobalt-based alloy may be recommended.


Sign in / Sign up

Export Citation Format

Share Document