scholarly journals Ostwald ripening microkinetic simulation of Au clusters on MgO(0 0 1)

2022 ◽  
Vol 572 ◽  
pp. 151317
Author(s):  
Samantha Francis ◽  
Alexandre Boucher ◽  
Glenn Jones ◽  
Alberto Roldan
Keyword(s):  
1998 ◽  
Vol 536 ◽  
Author(s):  
E. M. Wong ◽  
J. E. Bonevich ◽  
P. C. Searson

AbstractColloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. We show that the growth kinetics of the ZnO particles follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films were fabricated by constant current electrophoretic deposition (EPD) of the ZnO quantum particles from these colloidal suspensions. All the films exhibited a blue shift relative to the characteristic green emission associated with bulk ZnO. The optical characteristics of the particles in the colloidal suspensions were found to translate to the films.


2017 ◽  
Vol 9 (2) ◽  
pp. 02025-1-02025-6
Author(s):  
B. V. Ivanskii ◽  
◽  
R. D. Vengrenovich ◽  
V. I. Kryvetskyi ◽  
Yu. M. Kushnir ◽  
...  

2014 ◽  
Vol 14 (13) ◽  
pp. 1139-1144 ◽  
Author(s):  
Sangram Raut ◽  
Ryan Rich ◽  
Rafal Fudala ◽  
R. Kokate ◽  
J.D. Kimball ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1637
Author(s):  
Yunjiao Zhao ◽  
Rui Liu ◽  
Cuiping Qi ◽  
Wen Li ◽  
Mohamed Rifky ◽  
...  

The active components in garlic essential oil are easily degradable, which limits its application in the food industry. Vegetable oils (VOs) were used to improve the stability of garlic essential oil (GEO) emulsion. The volatile compounds of GEO and its mixtures with vegetable oils (VOs), including corn oil (CO), soybean oil (SO), and olive oil (OO) indicated that GEO-VO mixtures had a higher percentage of Diallyl disulfide and Diallyl trisulfide than pure GEO. Adding an appropriate amount of VOs promoted the GEO emulsion (whey protein concentrate and inulin as the wall materials) stability in order of CO > SO > OO. Evaluation of the encapsulation efficiency, controlled release, and antimicrobial activity of GEO-VO microcapsules showed that the GEO was successfully entrapped and slowly released with active antibacterial activities on both E. coli and S. aureus. Collectively, these results implied that VOs, especially for 20% CO, improved the stability of GEO emulsions and the encapsulation efficiency of GEO microcapsules. The mechanism might be related to (1) the regulating effect of density difference between oil and water phases on prevention to gravitational separation, (2) the promotion to the compatibility of GEO and VOs to inhibit the phase separation caused by Ostwald ripening.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
Yali Zhou ◽  
Zhenyao Han ◽  
Chunlin He ◽  
Qin Feng ◽  
Kaituo Wang ◽  
...  

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.


CrystEngComm ◽  
2009 ◽  
Vol 11 (8) ◽  
pp. 1591 ◽  
Author(s):  
Zhiming Chen ◽  
Zhirong Geng ◽  
Menglu Shi ◽  
Zhihui Liu ◽  
Zhilin Wang

Nano Research ◽  
2021 ◽  
Author(s):  
Bo Weng ◽  
Youhong Jiang ◽  
Hong-Gang Liao ◽  
Maarten B. J. Roeffaers ◽  
Feili Lai ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tian-Le Cheng ◽  
You-Hai Wen

AbstractA phase-field model is proposed to simulate coherency loss coupled with microstructure evolution. A special field variable is employed to describe the degree of coherency loss of each particle and its evolution is governed by a Ginzburg-Landau type kinetic equation. For the sake of computational efficiency, a flood-fill algorithm is introduced that can drastically reduce the required number of field variables, which allows the model to efficiently simulate a large number of particles sufficient for characterizing their statistical features during Ostwald ripening. The model can incorporate size dependence of coherency loss, metastability of coherent particles, and effectively incorporate the underlying mechanisms of coherency loss by introducing a so-called differential energy criterion. The model is applied to simulate coarsening of Al3Sc precipitates in aluminum alloy and comprehensively compared with experiments. Our results clearly show how the particle size distribution is changed during coherency loss and affects the coarsening rate.


Sign in / Sign up

Export Citation Format

Share Document