Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds

Aquaculture ◽  
2006 ◽  
Vol 255 (1-4) ◽  
pp. 179-187 ◽  
Author(s):  
Ayyaru Gopalakannan ◽  
Venkatesan Arul
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Roghieh Safari ◽  
Seyed Hossein Hoseinifar ◽  
Maryam Dadar ◽  
Hien Van Doan

AbstractThe present study investigated possible effects of dietary malic acid on the expression of immunity, antioxidant and growth related genes expression as well as skin mucus immune parameters in common carp. Common carp (Cyprinus carpio) fingerlings were fed diets supplemented with different levels (0 [control], 0.5%, 1%, 2%) of malic acid (MA) for 60 days. The results revealed highest expression levels of immune-related genes (tnf-alpha, il1b, il8 and lyz) in skin of common carp fed 2% MA (P < 0.05). Regarding 1% MA treatment comparison with control group, significant difference was noticed just in case of lyz (P < 0.05). Evaluation of growth related genes expression revealed no significant difference between treatments (P > 0.05). The study of antioxidant related genes (gsta and gpx) in common carp skin fed with MA, showed significant difference between treated groups and control (P < 0.05). Carps fed with 2% MA had highest alkaline phosphatase activity in skin mucus compared other treated groups and control (P < 0.05). There were no significant difference between 0.5% and 1% and control (P > 0.05). The study of total protein and total immunoglobulin (Ig) in common carp skin musus revealed no alteration following MA treatment (P > 0.05). The present data demonstrated that feeding with MA altered immune and antioxidant genes expression in skin mucus of common carp.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


Author(s):  
Ida N Jamal ◽  
Reiny A Tumbol ◽  
Remy E.P Mangindaan

Motile Aeromonas Septicaemia disease (MAS) attacking tilapia has increased in recent years as a consequence of intensive aquaculture activities, which led to losses in aquaculture industry. The agent causing MAS disease is Aeromonas hydrophila. The disease can be controlled with the β-glucan. As immunostimulants, β-glucans can also increase resistance in farmed tilapia. Studies on the use of β-glucan extracted from baker's yeast Saccharomyces cerevisiae was intended to evaluate the non-specific immune system of tilapia that were challenged with Aeromonas hydrophila. The method used was an experimental method with a completely randomized design consisting of four treatments with three replicats. The dose of β-glucan used as treatments were 0 mg.kg-1 fish (Control), 5 mg.kg-1 fish (B), 10 mg.kg-1 fish (C) and 20 mg.kg-1 fish (D), each treatment as injected three times at intervals of 3 days, the injection volume of 0.5 ml/fish for nine days and resistance surveillance for seven days. The results showed that the difference in the amount of β-glucan and the frequency of the injected real influence on total leukocytes, phagocytic activity and resistance. Total leukocytes, phagocytic activity and resistance to treatment was best achieved by the administration of C a dose of  10 mg.kg-1 of the fish© Penyakit Motil Aeromonas Septicaemia (MAS) yang menyerang ikan nila mengalami peningkatan selama beberapa tahun terakhir sebagai konsekuensi dari kegiatan akuakultur intensif, yang menyebabkan kerugian dalam industri budidaya. Agen utama penyebab penyakit MAS adalah Aeromonas hydrophila. Untuk mengendalikan penyakit tersebut dapat dilakukan dengan pemberian β-glukan. Sebagai imunostimulan, β-glukan juga dapat  meningkatkan resistensi pada ikan nila yang dibudidayakan. Pengkajian mengenai pemanfaatan β-glukan yang diekstrak dari ragi roti Saccharomyces cerevisiae dimaksudkan untuk menguji sistem imun non spesifik ikan nila yang diuji tantang dengan bakteri Aeromonas hydrophila. Metode yang digunakan yaitu metode eksperimen dengan rancangan acak lengkap yang terdiri dari empat perlakuan dan tiga ulangan. Dosis β-glukan  yang digunakan sebagai perlakuan sebesar 0 mg.kg-1 ikan (Kontrol), 5 mg.kg-1 ikan (B), 10 mg.kg-1 ikan (C) dan 20 mg.kg-1 ikan (D), masing-masing perlakuan diinjeksi sebanyak 3 kali dengan interval waktu 3 hari selama 9 hari, volume injeksi 0,5 mL/ekor ikan dan pengamatan resistensi selama tujuh hari. Hasil penelitian menunjukkan perbedaan jumlah β-glukan dan frekuensi pemberian yang diinjeksikan memberikan pengaruh nyata terhadap total leukosit, aktivitas fagositosis dan resistensi. Total leukosit, aktivitas fagositosis dan resistensi terbaik dicapai pada perlakuan C dengan dosis 10 mg.kg-1 ikan©


2020 ◽  
Vol 22 (1) ◽  
pp. 315
Author(s):  
Jana Brejchova ◽  
Vladimir Holan ◽  
Petr Svoboda

The observation of the immunomodulatory effects of opioid drugs opened the discussion about possible mechanisms of action and led researchers to consider the presence of opioid receptors (OR) in cells of the immune system. To date, numerous studies analyzing the expression of OR subtypes in animal and human immune cells have been performed. Some of them confirmed the expression of OR at both the mRNA and protein level, while others did not detect the receptor mRNA either. Although this topic remains controversial, further studies are constantly being published. The most recent articles suggested that the expression level of OR in human peripheral blood lymphocytes could help to evaluate the success of methadone maintenance therapy in former opioid addicts, or could serve as a biomarker for chronic pain diagnosis. However, the applicability of these findings to clinical practice needs to be verified by further investigations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kenichi Kamata ◽  
Kenji Mizutani ◽  
Katsuya Takahashi ◽  
Roberta Marchetti ◽  
Alba Silipo ◽  
...  

AbstractSeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac$$\alpha$$ α (2-3)Gal$$\beta$$ β (1-3)GalNAc$$\beta$$ β (1-4)Gal$$\beta$$ β (1-4)Glc) and its precursor, asialo-GM1 (Gal$$\beta$$ β (1-3)GalNAc$$\beta$$ β (1-4)Gal$$\beta$$ β (1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the $$\beta$$ β -trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.


2019 ◽  
Vol 26 (11) ◽  
pp. 1485-1492
Author(s):  
Xiaochun Yi ◽  
Jie Zhang ◽  
Huixiang Liu ◽  
Tianxia Yi ◽  
Yuhua Ou ◽  
...  

The adverse clinical result and poor treatment outcome in recurrent spontaneous abortion (RSA) make it necessary to understand the pathogenic mechanism. The mating combination CBA/J × DBA/2 has been widely used as an abortion-prone model compared to DBA/2-mated CBA/J mice. Here, we used RNA-seq to get a comprehensive catalogue of genes differentially expressed between survival placenta in abortion-prone model and control. Five hundred twenty-four differentially expressed genes were obtained followed by clustering analysis, Gene Ontology analysis, and pathway analysis. We paid more attention to immune-related genes namely “immune response” and “immune system process” including 33 downregulated genes and 28 upregulated genes. Twenty-one genes contribute to suppressing immune system and 7 are against it. Six genes were validated by reverse transcription-polymerase chain reaction, namely Ccr1l1, Tlr4, Tgf-β1, Tyro3, Gzmb, and Il-1β. Furthermore, Tlr4, Tgf-β1, and Il-1β were analyzed by Western blot. Such immune profile gives us a better understanding of the complicated immune processing in RSA and immunosuppression can rescue pregnancy loss.


Sign in / Sign up

Export Citation Format

Share Document