Role of ubiquitin ligase PELI1 deficiency in atherosclerosis

2021 ◽  
Vol 331 ◽  
pp. e80
Author(s):  
K.T. Miteva ◽  
F. Burger ◽  
D. Baptista ◽  
A. Roth ◽  
F. Mach ◽  
...  
Keyword(s):  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ariadna Recasens ◽  
Sean J. Humphrey ◽  
Michael Ellis ◽  
Monira Hoque ◽  
Ramzi H. Abbassi ◽  
...  

AbstractBoth tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.


2017 ◽  
Vol 474 (18) ◽  
pp. 3075-3086 ◽  
Author(s):  
Nikhil Panicker ◽  
Valina L. Dawson ◽  
Ted M. Dawson

Monogenetic, familial forms of Parkinson's disease (PD) only account for 5–10% of the total number of PD cases, but analysis of the genes involved therein is invaluable to understanding PD-associated neurodegenerative signaling. One such gene, parkin, encodes a 465 amino acid E3 ubiquitin ligase. Of late, there has been considerable interest in the role of parkin signaling in PD and in identifying its putative substrates, as well as the elucidation of the mechanisms through which parkin itself is activated. Its dysfunction underlies both inherited and idiopathic PD-associated neurodegeneration. Here, we review recent literature that provides a model of activation of parkin in the setting of mitochondrial damage that involves PINK1 (PTEN-induced kinase-1) and phosphoubiquitin. We note that neuronal parkin is primarily a cytosolic protein (with various non-mitochondrial functions), and discuss potential cytosolic parkin activation mechanisms.


Open Biology ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 130217 ◽  
Author(s):  
Puneet Sharma ◽  
Alo Nag

The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.


2007 ◽  
Vol 27 (9) ◽  
pp. 3481-3488 ◽  
Author(s):  
Min Li ◽  
J. Philippe York ◽  
Pumin Zhang

ABSTRACT The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase mediating targeted proteolysis through ubiquitination of protein substrates to control the progression of mitosis. The APC/C recognizes its substrates through two adapter proteins, Cdc20 and Cdh1, which contain similar C-terminal domains composed of seven WD-40 repeats believed to be involved in interacting with their substrates. During the transition from metaphase to anaphase, APC/C-Cdc20 mediates the ubiquitination of securin and cyclin B1, allowing the activation of separase and the onset of anaphase and mitotic exit. APC/C-Cdc20 and APC/C-Cdh1 have overlapping substrates. It is unclear whether they are redundant for mitosis. Using a gene-trapping approach, we have obtained mice which lack Cdc20 function. These mice show failed embryogenesis. The embryos were arrested in metaphase at the two-cell stage with high levels of cyclin B1, indicating an essential role of Cdc20 in mitosis that is not redundant with that of Cdh1. Interestingly, Cdc20 and securin double mutant embryos could not maintain the metaphase arrest, suggesting a role of securin in preventing mitotic exit.


2021 ◽  
Vol 220 (11) ◽  
Author(s):  
James L. Shen ◽  
Tina M. Fortier ◽  
Ruoxi Wang ◽  
Eric H. Baehrecke

Defects in autophagy cause problems in metabolism, development, and disease. The autophagic clearance of mitochondria, mitophagy, is impaired by the loss of Vps13D. Here, we discover that Vps13D regulates mitophagy in a pathway that depends on the core autophagy machinery by regulating Atg8a and ubiquitin localization. This process is Pink1 dependent, with loss of pink1 having similar autophagy and mitochondrial defects as loss of vps13d. The role of Pink1 has largely been studied in tandem with Park/Parkin, an E3 ubiquitin ligase that is widely considered to be crucial in Pink1-dependent mitophagy. Surprisingly, we find that loss of park does not exhibit the same autophagy and mitochondrial deficiencies as vps13d and pink1 mutant cells and contributes to mitochondrial clearance through a pathway that is parallel to vps13d. These findings provide a Park-independent pathway for Pink1-regulated mitophagy and help to explain how Vps13D regulates autophagy and mitochondrial morphology and contributes to neurodegenerative diseases.


Author(s):  
Jiayan Xie ◽  
Yimei Jin ◽  
Guang Wang

AbstractAs the largest family of E3 ligases, the Skp1-cullin 1-F-box (SCF) E3 ligase complex is comprised of Cullins, Skp1 and F-box proteins. And the SCF E3 ubiquitin ligases play an important role in regulating critical cellular processes, which promote degradation of many cellular proteins, including signal transducers, cell cycle regulators, and transcription factors. We review the biological roles of the SCF ubiquitin-ligase complex in gametogenesis, oocyte-to-embryo transition, embryo development and the regulation for estrogen and progestin. We find that researches about the SCF ubiquitin-ligase complex at the beginning of life are not comprehensive, thus more in-depth researches will promote its eventual clinical application.


2020 ◽  
Vol 11 (14) ◽  
pp. 4007-4014
Author(s):  
Zhao-Ru Dong ◽  
Wei Zhou ◽  
Dong Sun ◽  
Yu-Chuan Yan ◽  
Chun-Cheng Yang ◽  
...  

2019 ◽  
Vol 218 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Victoria Riccio ◽  
Nicholas Demers ◽  
Rong Hua ◽  
Miluska Vissa ◽  
Derrick T. Cheng ◽  
...  

The regulation of organelle abundance is critical for cell function and survival; however, the mechanisms responsible are not fully understood. In this study, we characterize a role of the deubiquitinating enzyme USP30 in peroxisome maintenance. Peroxisomes are highly dynamic, changing in abundance in response to metabolic stress. In our recent study identifying the role of USP30 in mitophagy, we observed USP30 to be localized to punctate structures resembling peroxisomes. We report here that USP30, best known as a mitophagy regulator, is also necessary for regulating pexophagy, the selective autophagic degradation of peroxisomes. We find that overexpressing USP30 prevents pexophagy during amino acid starvation, and its depletion results in pexophagy induction under basal conditions. We demonstrate that USP30 prevents pexophagy by counteracting the action of the peroxisomal E3 ubiquitin ligase PEX2. Finally, we show that USP30 can rescue the peroxisome loss observed in some disease-causing peroxisome mutations, pointing to a potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document