scholarly journals The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors

Author(s):  
Ran Friedman
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunqi Zhu ◽  
Xiangmin Tong ◽  
Ying Wang ◽  
Xiaoya Lu

AbstractAcute myeloid leukemia (AML) is an aggressive and heterogeneous clonal hematologic malignancy for which novel therapeutic targets and strategies are required. Emerging evidence suggests that WTIP is a candidate tumor suppressor. However, the molecular mechanisms of WTIP in leukemogenesis have not been explored. Here, we report that WTIP expression is significantly reduced both in AML cell lines and clinical specimens compared with normal controls, and low levels of WTIP correlate with decreased overall survival in AML patients. Overexpression of WTIP inhibits cell proliferation and induces apoptosis both in vitro and in vivo. Mechanistic studies reveal that the apoptotic function of WTIP is mediated by upregulation and nuclear translocation of FOXO3a, a member of Forkhead box O (FOXO) transcription factors involved in tumor suppression. We further demonstrate that WTIP interacts with FOXO3a and transcriptionally activates FOXO3a. Upon transcriptional activation of FOXO3a, its downstream target PUMA is increased, leading to activation of the intrinsic apoptotic pathway. Collectively, our results suggest that WTIP is a tumor suppressor and a potential target for therapeutic intervention in AML.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2493
Author(s):  
Sebastian Scholl ◽  
Maximilian Fleischmann ◽  
Ulf Schnetzke ◽  
Florian H. Heidel

Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD)-positive acute myeloid leukemia (AML) remains a challenge despite the development of novel FLT3-directed tyrosine kinase inhibitors (TKI); the relapse rate is still high even after allogeneic stem cell transplantation. In the era of next-generation FLT3-inhibitors, such as midostaurin and gilteritinib, we still observe primary and secondary resistance to TKI both in monotherapy and in combination with chemotherapy. Moreover, remissions are frequently short-lived even in the presence of continuous treatment with next-generation FLT3 inhibitors. In this comprehensive review, we focus on molecular mechanisms underlying the development of resistance to relevant FLT3 inhibitors and elucidate how this knowledge might help to develop new concepts for improving the response to FLT3-inhibitors and reducing the development of resistance in AML. Tailored treatment approaches that address additional molecular targets beyond FLT3 could overcome resistance and facilitate molecular responses in AML.


Blood Science ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 77-83
Author(s):  
Jiazhen Wang ◽  
Peipei Wang ◽  
Tiantian Zhang ◽  
Zhuying Gao ◽  
Jing Wang ◽  
...  

2011 ◽  
Vol 26 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Chunmei Wang ◽  
Jie Lu ◽  
Yumei Wang ◽  
Songting Bai ◽  
Yingchao Wang ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169128 ◽  
Author(s):  
Chengyin Min ◽  
Nathan Moore ◽  
Jeffrey R. Shearstone ◽  
Steven N. Quayle ◽  
Pengyu Huang ◽  
...  

Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 338-343 ◽  
Author(s):  
Rodrigo T. Calado

AbstractTelomeres, repeat sequences at the ends of chromosomes, are protective chromosomal structures highly conserved from primitive organisms to humans. Telomeres inevitably shorten with every cell cycle, and telomere attrition has been hypothesized to be fundamental to normal senescence of cells, tissues, and organisms. Molecular mechanisms have evolved to maintain their length and protective function; telomerase (TERT) is a reverse transcriptase enzyme that uses an RNA molecule (TERC) as the template to elongate the 3′ ends of telomeres. Shelterin is a collection of DNA-binding proteins that cover and protect telomeres. The recent discovery of inherited mutations in genes that function to repair telomeres as etiologic in a range of human diseases, which have clinical manifestations in diverse tissues, including the hematopoietic tissue, suggests that defects in telomere repair and protection can cause organ failure. Dyskeratosis congenita is the prototype of telomere diseases; it is characterized by bone marrow failure, mucocutaneous abnormalities, pulmonary fibrosis, liver cirrhosis, and increased susceptibility to cancer, including acute myeloid leukemia. Aplastic anemia, acute myeloid leukemia, and idiopathic pulmonary fibrosis also are associated with inherited mutations in telomere repair or protection genes. Additionally, telomere defects associate with predisposition to hematologic malignancy and epithelial tumors. Telomere erosion is abnormally rapid in patients with mutations in telomerase genes but also after hematopoietic stem cell transplant, and telomeres are naturally shorter in older individuals—all conditions associated with higher rates of malignant diseases. In human tissue culture, short telomeres produce end-to-end chromosome fusion, nonreciprocal translocations, and aneuploidy.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Haijiao Zhang ◽  
Samantha Savage ◽  
Anna Reister Schultz ◽  
Daniel Bottomly ◽  
Libbey White ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 531 ◽  
Author(s):  
Lisa Lirussi ◽  
Giulia Antoniali ◽  
Pasqualina Liana Scognamiglio ◽  
Daniela Marasco ◽  
Emiliano Dalla ◽  
...  

Apurinic/apyrimidinic endonuclease 1 (APE1), the main mammalian AP-endonuclease for the resolution of DNA damages through the base excision repair (BER) pathway, acts as a multifunctional protein in different key cellular processes. The signals to ensure temporo-spatial regulation of APE1 towards a specific function are still a matter of debate. Several studies have suggested that post-translational modifications (PTMs) act as dynamic molecular mechanisms for controlling APE1 functionality. Interestingly, the N-terminal region of APE1 is a disordered portion functioning as an interface for protein binding, as an acceptor site for PTMs and as a target of proteolytic cleavage. We previously demonstrated a cytoplasmic accumulation of truncated APE1 in acute myeloid leukemia (AML) cells in association with a mutated form of nucleophosmin having aberrant cytoplasmic localization (NPM1c+). Here, we mapped the proteolytic sites of APE1 in AML cells at Lys31 and Lys32 and showed that substitution of Lys27, 31, 32 and 35 with alanine impairs proteolysis. We found that the loss of the APE1 N-terminal domain in AML cells is dependent on the proteasome, but not on granzyme A/K as described previously. The present work identified the proteasome as a contributing machinery involved in APE1 cleavage in AML cells, suggesting that acetylation can modulate this process.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Huamei Li ◽  
Amit Sharma ◽  
Wenglong Ming ◽  
Xiao Sun ◽  
Hongde Liu

Abstract Background The identification of cell type-specific genes (markers) is an essential step for the deconvolution of the cellular fractions, primarily, from the gene expression data of a bulk sample. However, the genes with significant changes identified by pair-wise comparisons cannot indeed represent the specificity of gene expression across multiple conditions. In addition, the knowledge about the identification of gene expression markers across multiple conditions is still paucity. Results Herein, we developed a hybrid tool, LinDeconSeq, which consists of 1) identifying marker genes using specificity scoring and mutual linearity strategies across any number of cell types, and 2) predicting cellular fractions of bulk samples using weighted robust linear regression with the marker genes identified in the first stage. On multiple publicly available datasets, the marker genes identified by LinDeconSeq demonstrated better accuracy and reproducibility compared to MGFM and RNentropy. Among deconvolution methods, LinDeconSeq showed low average deviations (≤0.0958) and high average Pearson correlations (≥0.8792) between the predicted and actual fractions on the benchmark datasets. Importantly, the cellular fractions predicted by LinDeconSeq appear to be relevant in the diagnosis of acute myeloid leukemia (AML). The distinct cellular fractions in granulocyte-monocyte progenitor (GMP), lymphoid-primed multipotent progenitor (LMPP) and monocytes (MONO) were found to be closely associated with AML compared to the healthy samples. Moreover, the heterogeneity of cellular fractions in AML patients divided these patients into two subgroups, differing in both prognosis and mutation patterns. GMP fraction was the most pronounced between these two subgroups, particularly, in SubgroupA, which was strongly associated with the better AML prognosis and the younger population. Totally, the identification of marker genes by LinDeconSeq represents the improved feature for deconvolution. The data processing strategy with regard to the cellular fractions used in this study also showed potential for the diagnosis and prognosis of diseases. Conclusions Taken together, we developed a freely-available and open-source tool LinDeconSeq (https://github.com/lihuamei/LinDeconSeq), which includes marker identification and deconvolution procedures. LinDeconSeq is comparable to other current methods in terms of accuracy when applied to benchmark datasets and has broad application in clinical outcome and disease-specific molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document