Spatial memory in Vespula germanica wasps: a pilot study using a Y-maze assay

2021 ◽  
pp. 104439
Author(s):  
Sabrina Moreyra ◽  
Mariana Lozada
2008 ◽  
Vol 36 (02) ◽  
pp. 287-299 ◽  
Author(s):  
Yun Tai Kim ◽  
Youn-Ju Yi ◽  
Mi-Yeon Kim ◽  
Youngmin Bu ◽  
Zhen Hua Jin ◽  
...  

To investigate whether HT008-1, a prescription used in traditional Korean medicine to treat mental and physical weakness, has a neuroprotective effect on a rat model of global brain ischemia and an enhancing effect against memory deficit following ischemia. Global brain ischemia was induced for 10 min by using 4-vessel occlusion (4-VO). HT008-1 was orally administered at doses of 30, 100, and 300 mg/kg respectively twice at 0 and 90 min after ischemia. The effect on memory deficit was investigated by using a Y-maze neurobehavioral test 4 days after brain ischemia, and the effect on neuronal damage was measured 7 days after ischemia. The mechanism of action was studied immunohistochemically using an anti-CD11b (OX-42) antibody. The oral administration of HT008-1 at 100 and 300 mg/kg significantly reduced hippocampal neuronal cell death by 49% and 53%, respectively, compared with a vehicle-treated group, and also improved spatial memory function in the Y-maze test. Immunohistochemically, HT008-1 inhibited OX-42 expression in the hippocampus. The effects of HT008-1 were more pronounced than those of its individual herb components. The herbal mixture HT008-1 protects the most vulnerable CA1 pyramidal cells of the hippocampus and enhances spatial memory function against global brain ischemia; an anti-inflammatory effect may be one of the mechanisms of action.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Olakunle James Onaolapo ◽  
Adejoke Yetunde Onaolapo

This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Carsten Esselun ◽  
Benjamin Dilberger ◽  
Carmina Silaidos ◽  
Gunter Eckert

Abstract Objectives This study aims to investigate walnut's effect alone and in combination with an enriched environment on brain aging of aged NMRI mice by investigation of cognition and motor functions. Furthermore, it aims to identify the underlying mechanisms by evaluating the expression of relevant genes. Methods NMRI mice (12mo.) were fed with a 6% walnut-enriched diet (WED) or control diet respectively, for the duration of 6 months. Additionally, one WED group was exposed to an enriched environment. Cognition and motor functions were assessed to evaluate walnut's effect on spatial memory, general physical activity and motor coordination. Conducted tests included Y-Maze alternation, open field and rotarod. Expression levels of relevant genes including synaptophysin, NGF and BDNF were measured via qPCR in brain tissue. Mitochondrial function was investigated by testing for ATP levels and mitochondrial membrane potential in dissociated brain cells and oxygen consumption of the oxidative phosphorylation system of freshly isolated mitochondria. Results Intake of the walnut diet significantly increased the alternation rate in a Y-Maze experiment (P < 0.05). Physical activity did not further improve this effect on spatial memory of mice, but increased mice’ activity (P < 0.001) in general. Motor function in rotarod test was not improved by walnut intake alone, but significantly increased by added enrichment (P < 0.01). Gene expression of synaptophysin was significantly increased for walnuts alone (P < 0.05), while BDNF and NGF expression appeared to be unaffected. Additional enriched environment resulted in a trend for these genes to be increased as well. Results imply that mitochondrial function is not linked to these improvements. Conclusions Long term walnut diet significantly improved cognitive function in aged mice. Physical activity additionally improved motor functions. These benefits could possibly be explained by increased expression of genes involved in neuronal plasticity. Funding Sources Grant from California Walnut Commission.


2018 ◽  
Vol 105 (3) ◽  
pp. 210-224 ◽  
Author(s):  
R Indriawati ◽  
S Aswin ◽  
R Susilowati ◽  
G Partadiredja

Prenatal hypoxia–ischemia (HI) is a major cause of mortality and chronic neurological diseases in newborns. HI contributes to the emergence of several neurological disorders such as cognitive and behavioral deficits due to the atypical brain development. This study aimed at assessing the effects of prenatal HI on the spatial memory and aggression of rats during adolescence. Pregnant rats were divided into treatment and control groups. The rats of the treatment groups underwent unilateral ligation of the uterine artery on pregnancy day 7, 12, or 17. The offspring of these rats were tested for spatial memory and aggression when they reached 33 days of age. It has been found that the percentages of alternations in the Y-maze and the number of crossings in the Morris water maze tests of the HI groups were lower than those of the control groups. The total offense and defense aggression scores of the HI groups were higher than those of the control groups. In conclusion, the longer the duration of HI, the more deficits it causes in the spatial memory and aggression of rats during adolescence.


1996 ◽  
Vol 110 (6) ◽  
pp. 1321-1334 ◽  
Author(s):  
Cheryl D. Conrad ◽  
Liisa A. M. Galea ◽  
Yasukazu Kuroda ◽  
Bruce S. McEwen
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bhuwan Bhaskar ◽  
Atanu Adak ◽  
Mojibur R. Khan

AbstractRice beverages are traditionally prepared and consumed popularly by the different ethnic groups of North East India and claimed to have several health benefits. In an attempt to validate the traditional claims, effects of different fractions of the beverage were studied using mouse model. To investigate its effects on behavior, mice were treated with different fractions of rice beverage that included the beverage as a whole, insoluble and soluble fractions. Intragastric treatments of these fractions were given to the mice (n = 6 per group) for 30 days, and behavioral studies were performed on elevated plus and Y maze to evaluate anxiety and spatial memory, respectively. Next-generation sequencing of metagenomic DNA of the beverage indicated the presence of 157 OTUs, and 26 bacterial genera were dominant with an abundance of 0.1%. The insoluble fraction and the whole beverage treatments reduced the anxiety-like symptoms in animals indicating the probable role of microbes. Spatial memory improved in all the treatments compared to the control, of which the rice beverage treatment showed the highest levels (p < 0.05). Gas chromatography and mass spectroscopy-based metabolite profiling of the beverage revealed 10 alcohols, 29 sachharides, 43 acids, and 13 amino acids. Findings of this study suggest a positive effect of rice beverage on anxiety and spatial memory of mice, justifying the claims by ethnic communities on its role on mood regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thanh Tin Nguyen ◽  
Gi-Sung Nam ◽  
Jin-Ju Kang ◽  
Gyu Cheol Han ◽  
Ji-Soo Kim ◽  
...  

Objectives: To investigate the deficits of spatial memory and navigation from unilateral vestibular deafferentation (UVD) and to determine the efficacy of galvanic vestibular stimulation (GVS) for recovery from these deficits using a mouse model of unilateral labyrinthectomy (UL).Methods: Thirty-six male C57BL/6 mice were allocated into three groups that comprise a control group and two experimental groups, UVD with (GVS group) and without GVS intervention (non-GVS group). In the experimental groups, we assessed the locomotor and cognitive behavioral function before (baseline) and 3, 7, and 14 days after surgical UL, using the open field (OF), Y maze, and Morris water maze (MWM) tests. In the GVS group, the stimulations were applied for 30 min daily from postoperative day (POD) 0–4 via the electrodes inserted subcutaneously close to both bony labyrinths.Results: Locomotion and spatial cognition were significantly impaired in the mice with UVD non-GVS group compared to the control group. GVS significantly accelerated recovery of locomotion compared to the control and non-GVS groups on PODs 3 (p &lt; 0.001) and 7 (p &lt; 0.05, Kruskal–Wallis and Mann–Whitney U tests) in the OF and Y maze tests. The mice in the GVS group were better in spatial working memory assessed with spontaneous alternation performance and spatial reference memory assessed with place recognition during the Y maze test than those in the non-GVS group on POD 3 (p &lt; 0.001). In addition, the recovery of long-term spatial navigation deficits during the MWM, as indicated by the escape latency and the probe trial, was significantly better in the GVS group than in the non-GVS group 2 weeks after UVD (p &lt; 0.01).Conclusions: UVD impairs spatial memory, navigation, and motor coordination. GVS accelerated recoveries in short- and long-term spatial memory and navigation, as well as locomotor function in mice with UVD, and may be applied to the patients with acute unilateral vestibular failure.


2021 ◽  
Author(s):  
Bhuwan Bhaskar ◽  
Atanu Adak ◽  
Mojibur Rohman Khan

Rice beverages are traditionally prepared and consumed popularly by the different ethnic groups of North East India. To investigate its effects on behavior, mice were treated with different fractions of rice beverage that included the beverage as a whole, insoluble and soluble fractions. Intragastric treatments of these fractions were given to the mice (n=6 per group) for 30 days and behavioral studies were performed on elevated plus and Y maze to evaluate anxiety and spatial memory, respectively. Next generation sequencing of metagenomic DNA of the beverage indicated presence of 157 OTUs and 26 bacterial genera were dominant with an abundance of 0.1\%. The insoluble fraction treated animals showed lowest anxiety like symptoms. Spatial memory improved in all the treatments compared to the control, of which the rice beverage treatment showed the highest levels (\textit{p}\textless 0.05). Gas chromatography and mass spectroscopy-based metabolite profiling of the beverage revealed 10 alcohols, 29 sachharides, 43 acids and 13 amino acids. Findings of this study suggest a positive effect of rice beverage components on anxiety and spatial memory of mice.


Author(s):  
Dool-Ri Oh ◽  
Yujin Kim ◽  
Sojeong Im ◽  
Kyo-Nyeo Oh ◽  
Jawon Shin ◽  
...  

Vaccinium bracteatum Thunb. Leaves (VBL) are a component of traditional herbal medicines. However, molecular mechanisms of VBL in stress-related memory impairment are still unclear. This study aimed to investigate the spatial memory improvement effects of VBL in an animal model of chronic restraint stress (CRS) by using Y maze test and identified possible protective mechanisms against oxidative stress inducers (e.g., corticosterone and hydrogen peroxide [H2O2]) in SH-SY5Y neuronal cells. VBL showed neuroprotective effects via reduced release of lactate dehydrogenase (LDH) in corticosterone or H2O2-induced cell death that was mediated through the regulation of cleaved caspase-3 and Nrf2 pathways. Furthermore, CRS-exposed mice were orally administered VBL (10, 50, 100, and 200 mg/kg) daily for 21 days. CRS-exposed mice treated with VBL showed significantly increased spontaneous alternation in short-term memory (STM) and long-term memory (LTM) trials, and number of total arm entries in LTM trials as measured by the Y maze test. Moreover, VBL (50, 100, and 200 mg/kg) decreased acetylcholinesterase (AChE) activity in the hippocampus (HC, [Formula: see text] < 0.01 and [Formula: see text] < 0.001, respectively) and prefrontal cortex (PFC). CRS-exposed mice treated with VBL had dramatically decreased total Tau and Tau phosphorylation in the synapse of the HC and PFC which might be mediated by the regulation of CaMKII and GSK3[Formula: see text] phosphorylation. Additionally, VBL reduced CRS-induced upregulation of N-methyl-D-aspartate (NMDA) receptor subunits (NMDAR1, 2A, and 2B). Thus, VBL exerts spatial memory improvement by regulating CRS-induced NMDA receptor neurotoxicity and Tau hyperphosphorylation.


2009 ◽  
Vol 4 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Lucian Hritcu ◽  
Toshitaka Nabeshima

AbstractThe effects of lesioning the ventral tegmental area (VTA) or substantia nigra (SN) neurons by means of bilateral stereotaxic microinjections of kainic acid (KA) (0.4 mM) were investigated to clarify the role of the VTA and the SN neurons in learning and memory processes. The present study demonstrates that KA in the SN and the VTA lesioned rats significantly decreased spontaneous alternation in Y-maze task, working memory and reference memory in radial 8 arm-maze task, suggesting effects on spatial memory performance. Our findings provide further support for the role of the VTA and the SN neurons in processing and storage of information.


Sign in / Sign up

Export Citation Format

Share Document