Synthesis of aryl pyrazole via Suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with Kojic acid

2018 ◽  
Vol 79 ◽  
pp. 293-300 ◽  
Author(s):  
Pervaiz Ali Channar ◽  
Aamer Saeed ◽  
Fayaz Ali Larik ◽  
Bakhtawar Batool ◽  
Saima Kalsoom ◽  
...  
2020 ◽  
Vol 16 (11) ◽  
pp. 949-957
Author(s):  
R Asaithambi ◽  

It is known that α-glucosidase is linked with the antioxidant activity. Therefore, it is of interest to document the in- vitro and molecular docking analysis of chalconeimine derivatives with α-glucosidase (PDB ID: 2ZEO) for further consideration.


Author(s):  
Surendran Vijayaraj ◽  
Kannekanti Chaithanya Veena

Objective: Objective of the study is to perform a molecular docking analysis of novel oxime prodrug of gliclazide against SUR1 receptor.Methods: Sulfonylurea receptors (SUR) are membrane proteins which are the molecular targets of the sulfonylurea class of anti-diabetic drugs whose mechanism of action is to promote insulin release from pancreatic beta cells. Oxime prodrug of gliclazide a better soluble derivative of gliclazide is used for enhancement of bioavailability of gliclazide. Autodock 4.2 software was used for docking studies. Ligand 2D structures were drawn using ChemDraw Ultra 7.0. Binding sites, docking poses and interactions of the ligand with SUR1 receptors were studied by pymol software.Results: The docking studies suggest that potential binding sites of oxime prodrug of gliclazide exhibiting all the major interactions such as hydrogen bonding, hydrophobic interaction and electrostatic interaction with GLU43, LEU11, LEU 40, ILE17 GLU 68, GLN72 residues of SUR1. The binding energy of complexes are also found to be minimal forming stable complexes.Conclusion: In silico study of oxime prodrug of gliclazide conforms, the binding of oxime prodrug of glicalzide with SUR1 receptors which effectively controls the release insulin to regulate plasma glucose concentrations. Hence, the oxime prodrug of gliclazide could be a potent anti-diabetic target molecule which may be worth for further in vitro and in vivostudies. 


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126669 ◽  
Author(s):  
Jing Zhou ◽  
Guodi Lu ◽  
Honglan Wang ◽  
Junfeng Zhang ◽  
Jinao Duan ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4994 ◽  
Author(s):  
Sajib Rudra ◽  
Afroza Tahamina ◽  
Nazim Uddin Emon ◽  
Md. Adnan ◽  
Mohammad Shakil ◽  
...  

Tetrastigma leucostaphylum (TL) is an important ethnic medicine of Bangladesh used to treat diarrhea and dysentery. Hence, current study has been designed to characterize the antidiarrheal (in vivo) and cytotoxic (in vitro) effects of T. leucostaphylum. A crude extract was prepared with methanol (MTL) and further partitioned into n-hexane (NTL), dichloromethane (DTL), and n-butanol (BTL) fractions. Antidiarrheal activity was investigated using castor oil induced diarrhea, enteropooling, and gastrointestinal transit models, while cytotoxicity was evaluated using the brine shrimp lethality bioassay. In antidiarrheal experiments, all doses (100, 200, and 400 mg/kg) of the DTL extract significantly reduced diarrheal stool frequency, volume and weight of intestinal contents, and gastrointestinal motility in mice. Similarly, in the cytotoxicity assay, all extracts exhibited activity, with the DTL extract the most potent (LC50 67.23 μg/mL). GC-MS analysis of the DTL extract identified 10 compounds, which showed good binding affinity toward M3 muscarinic acetylcholine, 5-HT3, Gut inhibitory phosphodiesterase, DNA polymerase III subunit alpha, and UDP-N-acetylglucosamine-1 carboxyvinyltransferase enzyme targets upon molecular docking analysis. Although ADME/T analyses predicted the drug-likeness and likely safety upon consumption of these bioactive compounds, significant toxicity concerns are evident due to the presence of the known phytotoxin, 2,4-di-tert-butylphenol. In summary, T. leucostaphylum showed promising activity, helping to rationalize the ethnomedicinal use and importance of this plant, its safety profile following both acute and chronic exposure warrants further investigation.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 189 ◽  
Author(s):  
Yang Yang ◽  
Chong-Yin Shi ◽  
Jing Xie ◽  
Jia-He Dai ◽  
Shui-Lian He ◽  
...  

Moringa oleifera Lam. (MO) is called the “Miracle Tree” because of its extensive pharmacological activity. In addition to being an important food, it has also been used for a long time in traditional medicine in Asia for the treatment of chronic diseases such as diabetes and obesity. In this study, by constructing a library of MO phytochemical structures and using Discovery Studio software, compounds were subjected to virtual screening and molecular docking experiments related to their inhibition of dipeptidyl peptidase (DPP-IV), an important target for the treatment of type 2 diabetes. After the four-step screening process, involving screening for drug-like compounds, predicting the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of pharmacokinetic properties, LibDock heatmap matching analysis, and CDOCKER molecular docking analysis, three MO components that were candidate DPP-IV inhibitors were identified and their docking modes were analyzed. In vitro activity verification showed that all three MO components had certain DPP-IV inhibitory activities, of which O-Ethyl-4-[(α-l-rhamnosyloxy)-benzyl] carbamate (compound 1) had the highest activity (half-maximal inhibitory concentration [IC50] = 798 nM). This study provides a reference for exploring the molecular mechanisms underlying the anti-diabetic activity of MO. The obtained DPP-IV inhibitors could be used for structural optimization and in-depth in vivo evaluation.


2020 ◽  
Vol 104 ◽  
pp. 104277
Author(s):  
Maryam Aisyah Abdullah ◽  
Yu-Ri Lee ◽  
Siti Nurulhuda Mastuki ◽  
Sze Wei Leong ◽  
Wan Norhamidah Wan Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document