Coptisine from Rhizoma coptidis exerts an anti-cancer effect on hepatocellular carcinoma by up-regulating miR-122

2018 ◽  
Vol 103 ◽  
pp. 1002-1011 ◽  
Author(s):  
Fang-Ni Chai ◽  
Wen-Yu Ma ◽  
Jian Zhang ◽  
He-Shan Xu ◽  
Yuan-Feng Li ◽  
...  
Author(s):  
Xiao-Feng Zhu ◽  
Xiao-Jin Li ◽  
Zhong-Lian Cao ◽  
Xiu-Jie Liu ◽  
Ping Yang ◽  
...  

Background: A Chinese folk medicine plant Pleurospermum lindleyanum possesses pharmacological activities of heat-clearing, detoxifying and preventing from hepatopathy, coronary heart disease, hypertension, and high altitude sickness. We isolated and characterized its constituents to investigate its synergistic effects against human hepatoma SMMC-7721 cells. Objective: The aim of this study was to explore the synergistic anti-cancer activities of isolates from P. lindleyanum with 5-FU on hepatoma SMMC-7721 cells in vitro and their primary mechanisms. Methods: Sequential chromatographic techniques were conducted for the isolation studies. The isolates structures were established by spectroscopic analysis as well as X-ray crystallographic diffraction. Growth inhibition was detected by MTT assay. The isobologram method was used to assess the effect of drug combinations. Flow cytometry and western blot were used to examine apoptosis and protein expression. Results: A new coumarin (16), along with sixteen known compounds, were isolated from the whole plant of P. lindleyanum and their structures were elucidated by spectroscopic methods. Four coumarins (2, 3, 5, and 16), two flavonoids (8 and 9) and three phytosterols and triterpenes (12-14) were found to synergistically enhance the inhibitory effect of 5-FU against SMMC-7721 cells. Among them, compounds 3 and 16 exhibited the best synergistic effects with IC50 of 5-FU reduced by 16-fold and 22-fold possessing the minimum Combination Index (CI) 0.34 and 0.27. The mechanism of action of combinations might be through synergistic arresting for the cell cycle at G1 phases and the induction of apoptosis. Moreover, western blotting and molecular docking revealed that compounds 3 or 5 might promote 5-FU-induced apoptosis by regulating the expression of Caspase 9 and PARP. Conclusion: Constituents from P. lindleyanum may improve the treatment effectiveness of 5-FU against hepatocellular carcinoma cells.


2021 ◽  
Vol 22 (9) ◽  
pp. 4797
Author(s):  
So Young Kim ◽  
Cheol Park ◽  
Min Yeong Kim ◽  
Seon Yeong Ji ◽  
Hyun Hwangbo ◽  
...  

Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1178
Author(s):  
Suvesh Munakarmi ◽  
Juna Shrestha ◽  
Hyun-Beak Shin ◽  
Geum-Hwa Lee ◽  
Yeon-Jun Jeong

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide with limited treatment options. Biomarker-based active phenolic flavonoids isolated from medicinal plants might shed some light on potential therapeutics for treating HCC. 3,3′-diindolylmethane (DIM) is a unique biologically active dimer of indole-3-carbinol (I3C), a phytochemical compound derived from Brassica species of cruciferous vegetables—such as broccoli, kale, cabbage, and cauliflower. It has anti-cancer effects on various cancers such as breast cancer, prostate cancer, endometrial cancer, and colon cancer. However, the molecular mechanism of DIM involved in reducing cancer risk and/or enhancing therapy remains unknown. The aim of the present study was to evaluate anti-cancer and therapeutic effects of DIM in human hepatoma cell lines Hep3B and HuhCell proliferation was measured with MTT and trypan blue colony formation assays. Migration, invasion, and apoptosis were measured with Transwell assays and flow cytometry analyses. Reactive oxygen species (ROS) intensity and the loss in mitochondrial membrane potential of Hep3B and Huh7 cells were determined using dihydroethidium (DHE) staining and tetramethylrhodamine ethyl ester dye. Results showed that DIM significantly suppressed HCC cell growth, proliferation, migration, and invasion in a concentration-dependent manner. Furthermore, DIM treatment activated caspase-dependent apoptotic pathway and suppressed epithelial–mesenchymal transition (EMT) via ER stress and unfolded protein response (UPR). Taken together, our results suggest that DIM is a potential anticancer drug for HCC therapy by targeting ER-stress/UPR.


2021 ◽  
Vol 22 (8) ◽  
pp. 3956
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Hae June Lee ◽  
Kiwon Song

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


2021 ◽  
Vol 22 (4) ◽  
pp. 1700
Author(s):  
Jihye Seo ◽  
Jain Ha ◽  
Eunjeong Kang ◽  
Haelim Yoon ◽  
Sewoong Lee ◽  
...  

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC.


Sign in / Sign up

Export Citation Format

Share Document